The Protein Journal

, Volume 26, Issue 2, pp 117–124 | Cite as

Thermal Destabilization of Stem Bromelain by Trehalose


Trehalose, a naturally occurring osmolyte, is considered as a universal protein stabilizer. We investigated the effect of the disaccharides, trehalose and sucrose, on the thermal stability and conformation of bromelain. To our surprise, bromelain in the presence of 1 M trehalose/sucrose was destabilized under thermal stress. The average Tm values as determined by UV spectroscopy and CD spectropolarimetry decreased by 5° and 7°C for bromelain in 1 M sucrose or trehalose solutions, respectively. The enzyme was also found to inactivate faster at 60°C in the presence of these osmolytes. The tertiary and secondary structure of bromelain undergoes small changes in the presence of sucrose/trehalose. Studies on the binding of these osmolytes with the native and the heat denatured enzyme revealed that sucrose/trehalose lead to preferential hydration of the denatured bromelain as compared to the native one, hence stabilizing more the denatured conformation. This is perhaps the first report on the destabilization of a protein by trehalose.


Destabilization stem bromelain temperature trehalose 



pineapple stem bromelain


fraction denatured


circular dichroism


mid-point of thermal transition


sodium dodecyl sulphate-polyacylamide gel electrophoresis.



Facilities provided by Aligarh Muslim University are gratefully acknowledged. The work was also supported by the department of Science and Technology, Government of India, under its FIST programme, and the University Grants Commission, India under its special assistance programme.


  1. Arroya-Reyna A., Hernandez-Arana A. (1995). Biochem. Biophys. Acta 1248: 123–128Google Scholar
  2. Arroya-Reyna A., Hernandez-Arana A., Arreguin-Espinosa R. (1994). Biochem. J. 300: 107–110Google Scholar
  3. Brand L., Toptygin D.. (2000). Chem. Phys. Lett. 322: 492–502Google Scholar
  4. Bulman A. L., Nelson H. C.. (2005). Proteins 58: 826–835CrossRefGoogle Scholar
  5. Carninci P., Nishiyana Y., Westover A., Itoh M., Nagaoka S., Sasaki N., Okazaki Y., Muramatsu M., Hayashizaki Y. (1998). Proc. Natl. Acad. Sci. U.S.A. 95: 520–524CrossRefGoogle Scholar
  6. D′Alfonso L., Collini M., Baldini G. (2003). Eur. J. Biochem. 270: 2497–2504CrossRefGoogle Scholar
  7. Demeester, J., Dekeyser, P. M., Samyn, N., Sierens, W., and Lauwers, A. (1997). In: Lauwer, A. and Scharpe, S. (eds.), Pharmaceutical Enzymes, Marcel Dekker, New York, pp. 343–385Google Scholar
  8. Higashiyama T.. (2002). Pure Appl. Chem. 74: 1263–1269Google Scholar
  9. Kaushik J. K., Bhat R.. (2003). J. Biol. Chem. 278: 26458–26465CrossRefGoogle Scholar
  10. Kreilgaard L., Frokjaer S., Flink J. M., Randolph T. W., Carpenter J. F.. (1998). Arch. Biochem. Biophys. 360: 121–134CrossRefGoogle Scholar
  11. Lin T. Y., Timasheff S. N.. (1996). Protein Sci. 5: 372–381CrossRefGoogle Scholar
  12. López-Diez E. C., Bone S.. (2004). Biochem. Biophys. Acta 1673: 139–148Google Scholar
  13. Melo E. P., Faria T. Q., Martins L. O, Gonçalves A. M., Cabral J. M. (2001). Proteins 42: 542–552CrossRefGoogle Scholar
  14. Neumann D., Kohlbacher O., Lenhof H. P., Lehr C. M.. (2002). Eur. J. Biochem. 269: 1518–1524CrossRefGoogle Scholar
  15. Pawar S. A., Deshpande U. V.. (2000). Eur. J. Biochem. 267: 6331–6338CrossRefGoogle Scholar
  16. Ritonja A., Rowan A. D., Buttle D. J., Rowlings N. D., Turk V., Barett A. J.. (1989). FEBS Lett. 247: 419–424CrossRefGoogle Scholar
  17. Sola-Penna M., Ferreira-Pereira A., Lemos A. P., Meyer-Ferrandes J. R.. (1997). Eur. J. Biochem. 248: 24–29CrossRefGoogle Scholar
  18. Souillac P. O., Middaugh C. R., Rytting J. H.. (2002). Int. J. Pharm. 235: 207–218CrossRefGoogle Scholar
  19. Sun W. Q., Davidson P.. (1998). Biochem. Biophys. Acta 1425: 235–244Google Scholar
  20. Vanhoof, G., and Cooremann, W. (1997). In: Lauwer, A. and Scharpe, S. (ed.), Pharmaceutical Enzymes, Marcel Dekker, New York, pp. 131–153Google Scholar
  21. Von Seggern C. E., Cotter R. J.. (2004). J. Mass Spectrom. 39: 736–742CrossRefGoogle Scholar
  22. Wright W. W., Guffanti G. T., Vanderkooi J. M.. (2003). Biophys. J. 85: 1980–1995CrossRefGoogle Scholar
  23. Zancan P., Sola-Penna M.. (2005). Arch. Biochem. Biophys. 444: 52–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Immunology and Medical Microbiology, Walther Oncology CentreIndiana University School of MedicineIndianapolisUSA

Personalised recommendations