The Protein Journal

, Volume 26, Issue 1, pp 1–12 | Cite as

The Use of the Free Metal – Temperature ‘Phase Diagrams’ for Studies of Single Site Metal Binding Proteins



Typical physico-chemical studies of metal binding proteins are usually aimed at determination of the metal binding constant K for a native protein (K n), while the significance of the K value for the thermally denatured protein (K u) is usually underestimated. Meanwhile, metal binding induced shift of thermal denaturation transition of a single site metal binding protein is defined by K n to K u ratio, implying that knowledge of both K values is required for full characterization of the system. In the present work, the most universal approach to the studies of single site metal binding proteins, namely construction of a protein “phase diagram” in coordinates of free metal ion concentration – temperature, is considered in detail. The detailed algorithm of construction of the phase diagrams along with underlying mathematic procedures developed here may be of use for studies of other simple protein-target type systems, where target represents low molecular weight ligand. Analysis of the simplest protein-ligand system reveals that thermodynamic properties of apo-protein dictate the maximal possible increase of its affinity to any simple ligand upon thermal denaturation of the protein. Experimental and general problems coupled with the use of the phase diagrams are discussed.


ligand binding metal binding phase transition stability thermodynamics 



We are indebted to Prof. R. Kretsinger and Dr. V.N. Uversky for very useful discussion of our work and correction of the manuscript. This work was supported by grants from the Programs of the Russian Academy of Sciences (“Fundamental science for medicine” and “Molecular and cellular biology”), Grant 02.442.11.7542 of the Russian Federal Agency for Science and Innovations, Grant 04-04-97322 of the Russian Fund for Basic Research and individual grants to S.E.P. from the “Russian Science Support Foundation”, RUB2-010001-PU-05 CRDF and the Visby Programme of the Swedish Institute.


  1. Auld D. S. (2001) Biometals 14:271–313CrossRefGoogle Scholar
  2. Berchtold M. W., Brinkmeier H., Muntener M. (2000) Physiol. Rev. 80:1215–1265Google Scholar
  3. Beyersmann D., Haase H. (2001) Biometals 14:331–341CrossRefGoogle Scholar
  4. Carafoli E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99:1115–1122CrossRefGoogle Scholar
  5. Chai F., Truong-Tran A. Q., Ho L. H., Zalewski P. D. (1999) Immunol. Cell Biol. 77:272–278CrossRefGoogle Scholar
  6. Chakrabarti P. (1990) Protein Eng. 4:49–56CrossRefGoogle Scholar
  7. Clapham D. E. (1995) Cell 80:259–268CrossRefGoogle Scholar
  8. Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V., Venyaminov S. Y., Ptitsyn O. B. (1981) FEBS Lett. 136:311–315CrossRefGoogle Scholar
  9. Dominguez D. C. (2004) Mol. Microbiol. 54:291–297CrossRefGoogle Scholar
  10. Filimonov V. V., Pfeil W., Tsalkova T. N., Privalov P. L. (1978) Biophys. Chem. 8:117–122CrossRefGoogle Scholar
  11. Haeseleer F., Imanishi Y., Sokal I., Filipek S., Palczewski K. (2002) Biochem. Biophys. Res. Commun. 290:615–623CrossRefGoogle Scholar
  12. Krishna S. S., Majumdar I., Grishin N. V. (2003) Nucleic Acids Res. 31:532–550CrossRefGoogle Scholar
  13. Laity J. H., Lee B. M., Wright P. E. (2001) Curr. Opin. Struct. Biol. 11:39–46CrossRefGoogle Scholar
  14. Matthews J. M., Sunde M. (2002) IUBMB Life 54:351–355CrossRefGoogle Scholar
  15. Mely Y., De Rocquigny H., Morellet N., Roques B. P., Gerad D. (1996) Biochemistry 35:5175–5182CrossRefGoogle Scholar
  16. Permyakov E. A. (2005) α-Lactalbumin. Nova Science Publishers, New YorkGoogle Scholar
  17. Permyakov E. A., Medvedkin V. N., Kalinichenko L. P., Burstein E. A. (1983) Arch. Biochem. Biophys. 227:9–20CrossRefGoogle Scholar
  18. Permyakov E. A., Morozova L. A., Burstein E. A. (1985) Biophys. Chem. 21:21–31CrossRefGoogle Scholar
  19. Permyakov E. A., Shnyrov V. L., Kalinichenko L. P., Kuchar A., Reyzer I. L., Berliner L. J. (1991) J. Protein Chem. 10:577–584CrossRefGoogle Scholar
  20. Permyakov E. A., Yarmolenko V. V., Burstein E. A., Gerday C. (1982) Biophys. Chem. 15:19–26CrossRefGoogle Scholar
  21. Permyakov, S. E., Khokhlova, T. I., Nazipova, A. A., Zhadan, A. P., Morozova-Roche, L. A., and Permyakov, E. A. (2006). Proteins. 65: 984–998.CrossRefGoogle Scholar
  22. Persechini A., Moncrief N. D., Kretsinger R. H. (1989) Trends Neurosci. 12:462–467CrossRefGoogle Scholar
  23. Rosgen J., Hinz H. J. (2003) J. Mol. Biol. 328:255–271CrossRefGoogle Scholar
  24. Takeda A. (2001) Biometals 14:343–351CrossRefGoogle Scholar
  25. Ugarte M., Osborne N.N. (2001) Prog. Neurobiol. 64:219–249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Biological Instrumentation of the Russian Academy of SciencesPushchino, Moscow regionRussia

Personalised recommendations