The Protein Journal

, Volume 24, Issue 7–8, pp 479–485 | Cite as

Effects of Magnesium Ions on Thermal Inactivation of Alkaline Phosphatase

  • Ying Zhu
  • Xue-Ying Song
  • Wen-Hua Zhao
  • Ying-Xia Zhang


The effect of Mg2+ on the thermal inactivation and unfolding of calf intestinal alkaline phosphatase has been studied at different temperatures and Mg2+ concentrations. Increasing the Mg2+ concentration in the denatured system significantly enhanced the inactivation and unfolding of the enzyme during thermal inactivation. The analysis of the kinetic course of substrate reaction during thermal inactivation showed that at 47°C the increased free Mg2+ concentration caused the inactivation rate to increase. Increasing the temperature strengthened the effect of Mg2+ on the thermal inactivation. Control experiment showed that this is not due to salt effect. The time course of fluorescence emission spectra showed that the emission maximum for Mg2+-containing system was always higher than that of Mg2+-free system, and the higher temperature enhanced this difference. In addition, Mg2+also enhanced the unfolding rate of the enzyme at 47°C. The potential biological significance of these results are discussed.


Alkaline phosphatase magnesium ion thermal inactivation 



calf intestinal alkaline phosphatase


alkaline phosphatase


p-nitrophenyl phosphate


magnesium acetate


regression coefficient.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlers, J. 1974.Biochem. J.141257263Google Scholar
  2. Altura, B. M., Durlach, J., and Seelig, M. S. (1987). In: Altura, B. M., Durlach, J., and Seelig, M. S. (eds.), Magnesium in Cellular Processes and Medicine, pp 1–4.Google Scholar
  3. Altura, B. M., Gebrewold, A., Zhang, A. 1997Biochim. Biophys. Acta135815Google Scholar
  4. Anderson, R. A., Bosron, W. F., Kennedy, F. S., Vallee, B. L. 1975Proc. Natl. Acad. Sci. USA7229892993Google Scholar
  5. Cathala, G., Brunel, C. 1975J. Biol. Chem.25060466053Google Scholar
  6. Chen, Q. X., Zheng, W. Z., Lin, J. Y., Cai, Z. T., Zhou, H. M. 2000Int. J. Biochem. Cell. Biol.32879885Google Scholar
  7. Arco, A., Burguillo, F. J., Roig, M. G., Usero, J. L., Izquierdo, C., Herraez, M. A. 1982Int. J. Biochem. Cell. Biol.14127140Google Scholar
  8. Fosset, M. D., Chappelet-Tordo, M. L. 1974Biochemistry1317831787CrossRefGoogle Scholar
  9. Grubbs, R. D. 1991.Am. J. Physiol.260C1158C1164Google Scholar
  10. Himes, R. H., Burton, P. R., Gaito, J. M. 1977J. Biol. Chem.25262226228Google Scholar
  11. Hoylaerts, M. F., Manes, T., Millan, J. L. 1997J. Biol. Chem.2722278122787CrossRefGoogle Scholar
  12. Hwang, D. L., Yen, C. F., Nadler, J. L. 1993J. Clin. Endocrinol. Metab.76549553CrossRefGoogle Scholar
  13. Ishihima, S., Sonoda, T., Tatibana, M. 1991Am. J. Physiol.261C1074C1080Google Scholar
  14. Kim, E. E., Wyckoff, H. W. 1991J. Mol. Biol.281449464Google Scholar
  15. Du, M. H., Stigbrand, T., Taussig, M. J., Menez, A., Stura, E. A. 2001J. Biol. Chem.27691589165Google Scholar
  16. Maguire, M. E. 1990Metal Ions Biol. Syst.26135153Google Scholar
  17. Mccomb, R. B., Bower, G. N., Posen, S. 1979Alkaline PhosphatasePlenum PressNew YorkGoogle Scholar
  18. Millan, J. L. 1988Anticancer Res.89951004Google Scholar
  19. Millan, J. L. 1992Clin. Chim. Acta209123129CrossRefGoogle Scholar
  20. Millan, J. L, Fishman, W. H. 1995Crit. Rev. Clin. Lab. Sci.32139Google Scholar
  21. Sanui, H., Rubin, A. H. 1978J. Cell. Physiol.96265278CrossRefGoogle Scholar
  22. Stec, B., Holtz, K. M., Kantrowitz, E. R. 2000J. Mol. Biol.29913031311CrossRefGoogle Scholar
  23. Sun, G., Budde, R. J. A. 1997Biochemistry3621392146Google Scholar
  24. Tian, X. J., Song, X. H., Yan, S. L., Zhang, Y. X., Zhou, H. M. 2003J. Prot. Chem.22417422CrossRefGoogle Scholar
  25. Tibbitts, T. T., Murphy, J. E., Kantrowitz, E. R. 1996J. Mol. Biol.257700715CrossRefGoogle Scholar
  26. Xu, X., Kantrowitz, E. R. 1993Biochemistry321068310691Google Scholar
  27. Zhang, R. Q., Chen, Q. X., Zheng, W. Z., Lin, J. Y., Zhuang, Z. L., Zhou, H. M. 2000aInt. J. Biochem. Cell. Biol.32865872Google Scholar
  28. Zhang, Y. X., Zhu, Y., Zhou, H. M. 2000bInt. J. Biochem. Cell. Biol.32887894Google Scholar
  29. Zhang, Y. X., Zhu, Y., Xi, H. W., Liu, Y. L., Zhou, H. M. 2002Int. J. Biochem. Cell. Biol.3412411247Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ying Zhu
    • 1
  • Xue-Ying Song
    • 1
  • Wen-Hua Zhao
    • 1
  • Ying-Xia Zhang
    • 1
    • 2
  1. 1.Department of Chemical BiologyCapital University of Medical SciencesBeijingP. R. China
  2. 2.Laboratory for Liver Protection and Regulation of Capital University of Medical SciencesChina

Personalised recommendations