The Protein Journal

, Volume 24, Issue 1, pp 1–8 | Cite as

Involvement of Porin N,N-dicyclohexylcarbodiimide-Reactive Domain in Hexokinase Binding to the Outer Mitochondrial Membrane

  • Jalal A. Al jamal


The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membrane’s role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.


Dicyclohexylcarbodiimide hexokinase-binding protein mitochondria porin VDAC 





voltage-dependent anion-selective channel


translocase of the outer mitochondrial membrane


N-2-hydroxy ethyl piperazine- N′-2-ethanesulfonic acid




N,N dimethyldodecylamine-N-oxide


polyvinylidene difluoride


bovine serum albumin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al jamal, J. A. 2002Biol. Chem.38319671970CrossRefGoogle Scholar
  2. Al jamal, J. A. 2004J. Biochem.135253258CrossRefGoogle Scholar
  3. Bradford, M. M. 1976Anal. Biochem.72248254CrossRefPubMedGoogle Scholar
  4. Chou, A. C., Wilson, J. E. 1972Biochem. Biophys. Res. Commun.1514855Google Scholar
  5. De Pinto, V., Tommasino, M., Benz, R., Palmieri, F. 1985Biochem. Biophys. Acta813230242Google Scholar
  6. De Pinto, V., Benz, R., Palmieri, F. 1989Eur. J. Biochem.183179187Google Scholar
  7. De Pinto, V., Al jamal, J. A., Palmieri, F. 1993J. Biol. Chem.2681297712982Google Scholar
  8. Dixon, M. 1953BioChem. J.55170171Google Scholar
  9. Felgner, P. L., Messer, J. L., Wilson, J. E. 1979J. Biol. Chem.25449464949Google Scholar
  10. Fromm, H. J., Zewe, V. 1962J. Biol. Chem.23716611667Google Scholar
  11. Grossbard, L., Schimke, R. T. 1966J. Biol. Chem.24135463560Google Scholar
  12. Kayser, H., Kratzin, H. D., Thinnes, F. P., Gotz, H., Schmidt, W. E., Eckart, K., Hilsschmann, N. 1989Biol. Chem.37012651278Google Scholar
  13. Krimmer, T., Rapaport, D., Ryan, M. T., Meisinger, C., Kassenbrock, C. K., Blachly-Dyson, E., Forte, M., Douglas, M. J., Neupert, W., Nargang, F. E., Pfanner, N. 2001J. Cell Biol.152289300CrossRefGoogle Scholar
  14. Lazo, P. A, Sols, A., Wilson, J. E. 1980J. Biol. Chem.25575487551Google Scholar
  15. Magnani, M., Crinelli, R., Antonelli, A., Casabianca, A., Serafini, G. 1994Biochem. Biophys. Acta1206180190Google Scholar
  16. Mannella, C. A, Neuwald, A. F., Lawrence, C. E. 1996J. Bioenerg. Biomembr.28163169Google Scholar
  17. McCabe, E. R. B. 1983Human. BioChem. Med.30215230CrossRefGoogle Scholar
  18. McCabe, E. R. 1994J. Bioenerg. Biomembr.26317325CrossRefGoogle Scholar
  19. Nakashima, R. A., Mangan, P. S., Colombini, M., Pedersen, P. L. 1986Biochemistry2510151021Google Scholar
  20. Nakashima, R. A. 1989J. Bioenerg. Biomembr.21461469CrossRefGoogle Scholar
  21. Pert, C. M., Snowman, A. M., Snyder, S. H. 1974Brain Res.70184188CrossRefGoogle Scholar
  22. Polakis, P. G., Wilson, J. E. 1982Biochem. Biophys. Res. Commun.107937943Google Scholar
  23. Roos, N., Benz, R., Brdiczka, D. 1982Biochim. Biophys. Acta686204214Google Scholar
  24. Schagger, H., von Jagow, G. 1987Anal. Biochem.166368379CrossRefGoogle Scholar
  25. Schleiff, E., Silvius, J. R., Shore, G. 1999J. Cell Biol.145973978CrossRefGoogle Scholar
  26. Smith, M., Hicks, S., Baker, K., McCauley, R. 1994J. Biol. Chem.2692846028464Google Scholar
  27. Tuttle, J. P., Wilson, J. E. 1970Biochim. Biophys. Acta212185188Google Scholar
  28. Ureta, T., Radojkovic, J., Lagos, R., Guixe, V., Nunez, L. 1979Arch. Biol. Med. Exp.12587604Google Scholar
  29. Wilson, J. E. 1973Arch. Biochem. Biophys.154332340CrossRefGoogle Scholar
  30. Wilson, J. E. 1995Rev. Physiol. Biochem. Pharmacol.112665198Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculty of PharmacyPhiladelphia UniversityJordan

Personalised recommendations