Skip to main content
Log in

MPBPK-TMDD models for mAbs: alternative models, comparison, and identifiability issues

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate model identifiability when minimal physiologically-based pharmacokinetic (mPBPK) models are integrated with target mediated drug disposition (TMDD) models in the tissue compartment. Three quasi-steady-state (QSS) approximations of TMDD dynamics were explored: on (a) antibody-target complex, (b) free target, and (c) free antibody concentrations in tissue. The effects of the QSS approximations were assessed via simulations, taking as reference the mPBPK-TMDD model with no simplifications. Approximation (a) did not affect model-derived concentrations, while with the inclusion of approximation (b) or (c), target concentration profiles alone, or both drug and target concentration profiles respectively deviated from the reference model profiles. A local sensitivity analysis was performed, highlighting the potential importance of sampling in the terminal pharmacokinetic phase and of collecting target concentration data. The a priori and a posteriori identifiability of the mPBPK-TMDD models were investigated under different experimental scenarios and designs. The reference model and QSS approximation (a) on antibody-target complex were both found to be a priori identifiable in all scenarios, while under the further inclusion of QSS approximation (b) target concentration data were needed for a priori identifiability to be preserved. The property could not be assessed for the model including all three QSS approximations. A posteriori identifiability issues were detected for all models, although improvement was observed when appropriate sampling and dose range were selected. In conclusion, this work provides a theoretical framework for the assessment of key properties of mathematical models before their experimental application. Attention should be paid when applying integrated mPBPK-TMDD models, as identifiability issues do exist, especially when rich study designs are not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Covell DG, Barbet J, Holton OD, Black CD, Parker R, Weinstein JN (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res 46:3969–3978

    CAS  PubMed  Google Scholar 

  2. Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528

    CAS  PubMed  Google Scholar 

  3. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34(5):687–709

    Article  CAS  Google Scholar 

  4. Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody. J Pharm Sci 99(3):1582–1600

    Article  CAS  Google Scholar 

  5. Abuqayyas L, Balthasar JP (2012) Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. J Pharmacokinet Pharmacodyn 39:683–710

    Article  CAS  Google Scholar 

  6. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86

    Article  CAS  Google Scholar 

  7. Nestorov I, Aarons L, Rowland M (1997) Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis. J Pharmacokinet Biopharm 25(4):413–447

    Article  CAS  Google Scholar 

  8. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y (1998) Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 38(1):461–499

    Article  CAS  Google Scholar 

  9. Pilari S, Huisinga W (2010) Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn 37:365–405

    Article  CAS  Google Scholar 

  10. Cao Y, Jusko WJ (2012) Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 39:711–723

    Article  CAS  Google Scholar 

  11. Cao Y, Balthasar JP, Jusko WJ (2013) Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 40:597–607

    Article  CAS  Google Scholar 

  12. Elmeliegy M, Lowe P, Krzyzanski W (2014) Simplification of complex physiologically based pharmacokinetic models of monoclonal antibodies. AAPS J 16(4):810–842

    Article  CAS  Google Scholar 

  13. Fronton L, Pilari S, Huisinga W (2014) Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn 41:87–107

    Article  CAS  Google Scholar 

  14. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252

    Article  CAS  Google Scholar 

  15. Cao Y, Jusko WJ (2014) Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41:375–387

    Article  CAS  Google Scholar 

  16. Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39:429–451

    Article  Google Scholar 

  17. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  CAS  Google Scholar 

  18. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596

    Article  CAS  Google Scholar 

  19. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591

    Article  CAS  Google Scholar 

  20. Ma P (2011) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29:866–882

    Article  Google Scholar 

  21. Eudy R, Riggs MM, Gastonguay MR (2015) A priori identifiability of target-mediated drug disposition models and approximations. AAPS J 17:1280–1284

    Article  CAS  Google Scholar 

  22. Grimm HP (2009) Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn 36:407–420

    Article  CAS  Google Scholar 

  23. Mezzalana E, Lavezzi SM, Zamuner S, De Nicolao G, Ma P, Simeoni M (2015) Integrating target mediated drug disposition (TMDD) into a minimal physiologically based modelling framework: evaluation of different quasi-steady-state approximations. In: PAGE 24, Abstr 3598, Hersonissos, Greece. www.page-meeting.org/?abstract=3598

  24. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26(1):19–26

    Article  CAS  Google Scholar 

  25. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  CAS  Google Scholar 

  26. Karlsson J, Anguelova M, Jirstrand M (2012) An efficient method for structural identifiability analysis of large dynamic systems. IFAC Proc Vol 45(16):941–946

    Article  Google Scholar 

  27. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer, New York, pp 265–267

    Google Scholar 

  28. Hooker A, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24(12):2187–2197

    Article  CAS  Google Scholar 

  29. Bazzoli C, Retout S, Mentré F (2010) Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0. Comput Methods Programs Biomed 98:55–65

    Article  Google Scholar 

  30. Retout S, Comets E, Samson A, Mentré F (2007) Design in nonlinear mixed effects models: optimization using the Fedorov–Wynn algorithm and power of the Wald test for binary covariates. Stat Med 26:5162–5179

    Article  Google Scholar 

Download references

Funding

Funding for this analysis was provided by GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Simeoni.

Ethics declarations

Conflict of interest

Peiming Ma, Monica Simeoni, and Stefano Zamuner are employed by GlaxoSmithKline and hold company stocks.

Electronic supplementary material

Appendix

Appendix

Model equations for the four mPBPK-TMDD models (Full, A, B, and C) are here provided. Parameter and variables notations are as introduced in the sections The full mPBPK-TMDD model and Other mPBPK-TMDD models: quasi-steady-state approximations.

Full Model

$$\begin{aligned} C_p=\, & {} A_p/V_p \nonumber \\ \frac{dA_p}{dt}=\, & {} In(t)+C_{lymph} L-C_p L_1 (1-\sigma _1) - C_p L_2 (1-\sigma _2)-C_p C\! L_p \nonumber \\ \frac{dC_{tight}}{dt}= & {} \frac{1}{V_{tight}}\left[ L_1 (1-\sigma _1) C_p - L_1 (1-\sigma _L) C_{tight}\right] \nonumber \\ \frac{dC_{leaky_{free}}}{dt}= & {} \frac{1}{V_{leaky}}\left[ L_2 (1-\sigma _2) C_p - L_2 (1-\sigma _L) C_{leaky_{free}}\right] \nonumber \\&-k_{on} C_{leaky_{free}} R_{leaky_{free}} + k_{off} C\! R_{leaky} \nonumber \\ \frac{dR_{leaky_{free}}}{dt}=\, & {} k_{syn} - k_{deg} R_{leaky_{free}} - k_{on} C_{leaky_{free}} R_{leaky_{free}}+ k_{off} C\! R_{leaky} \nonumber \\ \frac{dC\! R_{leaky}}{dt}=\, & {} k_{on} C_{leaky_{free}} R_{leaky_{free}}- k_{off} C\! R_{leaky} - k_{int} C\! R_{leaky} \nonumber \\ \frac{dC_{lymph}}{dt}=\, & {} \frac{1}{V_{lymph}}[L_1 (1- \sigma _L) C_{tight} + L_2 (1-\sigma _L) C_{leaky_{free}}-C_{lymph} L] \end{aligned}$$
(4)

Model A

$$\begin{aligned} C_p=\, & {} A_p/V_p \nonumber \\ \frac{dA_p}{dt}=\, & {} In(t)+C_{lymph} L-C_p L1 (1-\sigma _1) - C_p L_2 (1-\sigma _2)-C_p C\! L_p \nonumber \\ \frac{dC_{tight}}{dt}=\, & {} \frac{1}{V_{tight}}\left[ L_1 (1-\sigma _1) C_p - L_1 (1-\sigma _L) C_{tight}\right] \nonumber \\ \frac{dC_{leaky_{total}}}{dt}=\, & {} \frac{1}{V_{leaky}}\left[ L_2 (1-\sigma _2) C_p - L_2 (1-\sigma _L) C_{leaky_{free}}\right] -k_{int} C\! R_{leaky} \nonumber \\ \frac{dR_{leaky_{total}}}{dt}=\, & {} k_{syn} - k_{deg} R_{leaky_{free}} - k_{int} C\! R_{leaky} \nonumber \\ \frac{dC_{lymph}}{dt}=\, & {} \frac{1}{V_{lymph}}\left[ L_1 (1- \sigma _L) C_{tight} + L_2 (1-\sigma _L) C_{leaky_{free}}-C_{lymph} L\right] \end{aligned}$$
(5)

where \(C_{leaky_{free}}\) and \(C\! R_{leaky}\) are computed as:

$$\begin{aligned} C_{leaky_{free}}= & {} \frac{1}{2}(C_{leaky_{total}}-R_{leaky_{total}} - k_{ss} \nonumber \\&+ \sqrt{(C_{leaky_{total}}-R_{leaky_{total}}-k_{ss})^{2}+4 k_{ss} C_{leaky_{total}}}) \nonumber \\ C\! R_{leaky}= & {} \frac{R_{leaky_{total}} C_{leaky_{free}}}{k_{ss}+C_{leaky_{free}}} \end{aligned}$$
(6)

Model B

$$\begin{aligned} C_p= \,& {} A_p/V_p \nonumber \\ \frac{dA_p}{dt}=\, & {} In(t)+C_{lymph} L-C_p L1 (1-\sigma _1) - C_p L_2 (1-\sigma _2)-C_p C\! L_p \nonumber \\ \frac{dC_{tight}}{dt}=\, & {} \frac{1}{V_{tight}}\left[ L_1 (1-\sigma _1) C_p - L_1 (1-\sigma _L) C_{tight}\right] \nonumber \\ \frac{dC_{leaky_{total}}}{dt}=\, & {} \frac{1}{V_{leaky}}\left[ L_2 (1-\sigma _2) C_p - L_2 (1-\sigma _L) C_{leaky_{free}}\right] -k_{int} C\! R_{leaky} \nonumber \\ \frac{dC_{lymph}}{dt}=\, & {} \frac{1}{V_{lymph}}\left[ L_1 (1- \sigma _L) C_{tight} + L_2 (1-\sigma _L) C_{leaky_{free}}-C_{lymph} L\right] \end{aligned}$$
(7)

where:

$$\begin{aligned} \alpha&= k_{int} \nonumber \\ \beta&= k_{ss} k_{deg} - k_{int} C_{leaky_{total}} + k_{syn} \nonumber \\ \gamma&= -k_{ss} k_{deg} C_{leaky_{total}} \nonumber \\ C_{leaky_{free}}&= \frac{1}{2 \alpha }\left( -\beta + \sqrt{\beta ^2 - 4\alpha \gamma }\right) \nonumber \\ R_{leaky_{free}}&= \frac{k_{syn} k_{ss}}{(k_{ss} k_{deg}+k_{int} C_{leaky_{free}})} \nonumber \\ C\! R_{leaky}&= \frac{R_{leaky_{free}} C_{leaky_{free}}}{k_{ss}} \end{aligned}$$
(8)

Model C

$$\begin{aligned} C_p=\, & {} A_p/V_p \nonumber \\ \frac{dA_p}{dt}=\, & {} In(t) + C_{lymph} L - C_p L_1 (1 - \sigma _1) - C_p L_2 (1 - \sigma _2) - C_p C\! L_p \nonumber \\ \frac{dC_{tight}}{dt}=\, & {} \frac{1}{V_{tight}}\left[ C_p L_1 (1-\sigma _1) - L_1 (1-\sigma _L) C_{tight}\right] \nonumber \\ \frac{dC_{lymph}}{dt}=\, & {} \frac{1}{V_{lymph}}\left[ L_1 (1-\sigma _L) C_{tight} + L_2 (1-\sigma _L) C_{leaky_{free}} - C_{lymph} L \right] \end{aligned}$$
(9)

where \(C_{leaky_{free}}\), \(R_{leaky_{free}}\) and \(C\! R_{leaky}\) are obtained as:

$$\begin{aligned} \alpha&= -k_{int} L_2 (1-\sigma _L) \nonumber \\ \beta&= k_{int} C_p L_2 (1-\sigma _2)-k_{ss} k_{deg} L_2 (1-\sigma _L)-k_{int} V_{leaky} k_{syn} \nonumber \\ \gamma&= k_{ss} k_{deg} C_p L_2 (1-\sigma _2) \nonumber \\ C_{leaky_{free}}&= \frac{1}{2\alpha }\left( -\beta - \sqrt{\beta ^2 - 4\alpha \gamma }\right) \nonumber \\ R_{leaky_{free}}&= \frac{k_{syn} k_{ss}}{(k_{ss} k_{deg}+k_{int} C_{leaky_{free}})} \nonumber \\ C\! R_{leaky}&= \frac{R_{leaky_{free}} C_{leaky_{free}}}{k_{ss}}\end{aligned}$$
(10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavezzi, S.M., Mezzalana, E., Zamuner, S. et al. MPBPK-TMDD models for mAbs: alternative models, comparison, and identifiability issues. J Pharmacokinet Pharmacodyn 45, 787–802 (2018). https://doi.org/10.1007/s10928-018-9608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-018-9608-7

Keywords

Navigation