Skip to main content

Advertisement

Log in

Systems pharmacological analysis of mitochondrial cardiotoxicity induced by selected tyrosine kinase inhibitors

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Tyrosine kinase inhibitors (TKIs) are targeted therapies rapidly becoming favored over conventional cytotoxic chemotherapeutics. Our study investigates two FDA approved TKIs, Dasatinib; indicated for Imatinib-refractory chronic myeloid leukemia, and Sorafenib; indicated for hepatocellular carcinoma and advanced renal cell carcinoma. Limited but crucial evidence suggests that these agents can have cardiotoxic side effects ranging from hypertension to heart failure. A greater understanding of the underlying mechanisms of this cardiotoxicity are needed as concerns grow and the capacity to anticipate them is lacking. The objective of this study was to explore the mitochondrial-mediated cardiotoxic mechanisms of the two selected TKIs. This was achieved experimentally using immortalized human cardiomyocytes, AC16 cells, to investigate dose- and time-dependent cell killing, along with measurements of temporal changes in key signaling proteins involved in the intrinsic apoptotic and autophagy pathways upon exposure to these agents. Quantitative systems pharmacology (QSP) models were developed to capture the toxicological response in AC16 cells using protein dynamic data. The developed QSP models captured well all the various trends in protein signaling and cellular responses with good precision on the parameter estimates, and were successfully qualified using external data sets. An interplay between the apoptotic and autophagic pathways was identified to play a major role in determining toxicity associated with the investigated TKIs. The established modeling platform showed utility in elucidating the mechanisms of cardiotoxicity of Sorafenib and Dasatinib. It may be useful for other small molecule targeted therapies demonstrating cardiac toxicities, and may aid in informing alternate dosing strategies to alleviate cardiotoxicity associated with these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Akt:

AKT8 virus oncogene cellular homolog

ASK1:

Apoptosis signal-regulating kinase 1

AT2:

Angiotensin II receptor type 2

ATP:

Adenosine triphosphate

BAD:

Bcl-2-associated death promoter

Bcl-2:

B-cell lymphoma 2 protein

Bcl-xL:

B-cell lymphoma-extra large protein

Bcr-Abl:

Fusion protein encoded by the Philadelphia chromosome

c-Kit:

Stem cell growth factor receptor

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

JNK:

Jun N-terminal kinase

LC3:

Microtubule-associated protein 1 light chain 3

MST2:

Serine/threonine kinase 3 (STK3)

mTORC1:

Mammalian target of rapamycin complex 1

PDGFR:

Platelet derived growth factor receptor

phospho-Akt/pAkt:

Phosphorylated Akt

phospho-BAD/pBAD:

Phosphorylated BAD

Phospho-Bcl2/pBcl2:

Phosphorylated Bcl-2

phospho-JNK/pJNK:

Phosphorylated JNK

PI3K:

Phosphoinositide 3 kinase

QSP:

Quantitative systems pharmacology

RAF:

Rapidly accelerated fibrosarcoma kinase protein

RAF1:

v-raf1 murine leukemia viral oncogene homolog 1

ROS:

Reactive oxygen species

S6K:

Ribosomal protein S6 kinase beta-1

Src:

Rous sarcoma oncogene cellular homolog tyrosine kinase protein

TKI:

Tyrosine kinase inhibitor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Hasinoff BB, Patel D (2010) The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol Appl Pharmacol 249(2):132–139

    Article  PubMed  CAS  Google Scholar 

  2. Hasinoff BB (2010) The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol Appl Pharmacol 244(2):190–195

    Article  PubMed  CAS  Google Scholar 

  3. Brave M et al (2008) Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res 14(2):352–359

    Article  PubMed  CAS  Google Scholar 

  4. Strumberg D et al (2007) Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12(4):426–437

    Article  PubMed  CAS  Google Scholar 

  5. Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  PubMed  CAS  Google Scholar 

  6. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7(5):332–344

    Article  PubMed  CAS  Google Scholar 

  7. Chou MT, Wang J, Fujita DJ (2002) Src kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells. BMC Biochem 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  8. Altarche-Xifro W et al (2009) Cardiac c-kit + AT2 + cell population is increased in response to ischemic injury and supports cardiomyocyte performance. Stem Cells 27(10):2488–2497

    Article  PubMed  CAS  Google Scholar 

  9. Will Y et al (2008) Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci 106(1):153–161

    Article  PubMed  CAS  Google Scholar 

  10. French KJ et al (2010) Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicol Pathol 38(5):691–702

    Article  PubMed  CAS  Google Scholar 

  11. Prieto-Dominguez N et al (2016) Modulation of autophagy by sorafenib: effects on treatment response. Front Pharmacol 7:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Heqing Y et al (2016) The role and mechanism of autophagy in sorafenib targeted cancer therapy. Crit Rev Oncol Hematol 100:137–140

    Article  PubMed  Google Scholar 

  13. Le XF et al (2010) Dasatinib induces autophagic cell death in human ovarian cancer. Cancer 116(21):4980–4990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Milano V et al (2009) Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol Cancer Ther 8(2):394–406

    Article  PubMed  CAS  Google Scholar 

  15. Yang X et al (2015) Autophagy protects against dasatinib-induced hepatotoxicity via p38 signaling. Oncotarget 6(8):6203–6217

    PubMed  PubMed Central  Google Scholar 

  16. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dewaele M, Maes H, Agostinis P (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6(7):838–854

    Article  PubMed  CAS  Google Scholar 

  18. Nakai A et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624

    Article  PubMed  CAS  Google Scholar 

  19. Nishida K et al (2009) The role of autophagy in the heart. Cell Death Differ 16(1):31–38

    Article  PubMed  CAS  Google Scholar 

  20. Knaapen MW et al (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51(2):304–312

    Article  PubMed  CAS  Google Scholar 

  21. Kostin S et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92(7):715–724

    Article  PubMed  CAS  Google Scholar 

  22. Davidson MM et al (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39(1):133–147

    Article  PubMed  CAS  Google Scholar 

  23. Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16(2):143–166

    Article  PubMed  CAS  Google Scholar 

  24. Sussman MA et al (2011) Myocardial AKT: the omnipresent nexus. Physiol Rev 91(3):1023–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Datta SR et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  PubMed  CAS  Google Scholar 

  26. Yang E et al (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80(2):285–291

    Article  PubMed  CAS  Google Scholar 

  27. Letai A et al (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    Article  PubMed  CAS  Google Scholar 

  28. Ito T et al (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272(18):11671–11673

    Article  PubMed  CAS  Google Scholar 

  29. Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15(4):515–522

    Article  PubMed  CAS  Google Scholar 

  30. Wang RC et al (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338(6109):956–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yu C et al (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13(3):329–340

    Article  PubMed  CAS  Google Scholar 

  32. Force T, Kolaja KL (2011) Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 10(2):111–126

    Article  PubMed  CAS  Google Scholar 

  33. Narula J et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96(14):8144–8149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zha J et al (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87(4):619–628

    Article  PubMed  CAS  Google Scholar 

  35. Tran TH et al (2007) Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 282(28):20340–20350

    Article  PubMed  CAS  Google Scholar 

  36. Bernt KM, Hunger SP (2014) Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 4:54

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    Article  PubMed  CAS  Google Scholar 

  38. Dutta D et al (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9(3):328–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kuwahara K et al (2000) Cardiotrophin-1 phosphorylates akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol 32(8):1385–1394

    Article  PubMed  CAS  Google Scholar 

  40. Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38(1):63–71

    Article  PubMed  CAS  Google Scholar 

  41. Mellor HR et al (2011) Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol Sci 120(1):14–32

    Article  PubMed  CAS  Google Scholar 

  42. Minden A et al (1994) Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266(5191):1719–1723

    Article  PubMed  CAS  Google Scholar 

  43. Muslin AJ (2011) Akt2: a critical regulator of cardiomyocyte survival and metabolism. Pediatr Cardiol 32(3):317–322

    Article  PubMed  Google Scholar 

  44. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    Article  PubMed  CAS  Google Scholar 

  45. Pan C et al (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteom 8(12):2796–2808

    Article  CAS  Google Scholar 

  46. Parcellier A et al (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20(1):21–30

    Article  PubMed  CAS  Google Scholar 

  47. Walko CM, Grande C (2014) Management of common adverse events in patients treated with sorafenib: nurse and pharmacist perspective. Semin Oncol 41(Suppl 2):S17–S28

    Article  PubMed  Google Scholar 

  48. Xia P, Liu Y, Cheng Z (2016) Signaling pathways in cardiac myocyte apoptosis. Biomed Res Int 2016:9583268

    PubMed  PubMed Central  Google Scholar 

  49. Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70(3):210–216

    Article  PubMed  CAS  Google Scholar 

  50. Sharma A, Ebling WF, Jusko WJ (1998) Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci 87(12):1577–1584

    Article  PubMed  CAS  Google Scholar 

  51. Chudasama VL et al (2015) Logic-based and cellular pharmacodynamic modeling of bortezomib responses in U266 human myeloma cells. J Pharmacol Exp Ther 354(3):448–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Czabotar PE et al (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  PubMed  CAS  Google Scholar 

  53. Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods Mol Biol 445:77–88

    Article  PubMed  CAS  Google Scholar 

  54. Rubinstein AD, Kimchi A (2012) Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125(Pt 22):5259–5268

    Article  PubMed  CAS  Google Scholar 

  55. Lobo ED, Balthasar JP (2002) Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 4(4):E42

    Article  PubMed  Google Scholar 

  56. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15(1):36–42

    Article  PubMed  Google Scholar 

  57. Andreka P et al (2001) Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 88(3):305–312

    Article  PubMed  CAS  Google Scholar 

  58. González A et al (2003) Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 59(3):549–562

    Article  PubMed  CAS  Google Scholar 

  59. Kunapuli S, Rosanio S, Schwarz ER (2006) “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12(5):381–391

    Article  PubMed  CAS  Google Scholar 

  60. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kabeya Y et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chiong M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Ait-Oudhia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, T., Kamta, J., Chaar, M. et al. Systems pharmacological analysis of mitochondrial cardiotoxicity induced by selected tyrosine kinase inhibitors. J Pharmacokinet Pharmacodyn 45, 401–418 (2018). https://doi.org/10.1007/s10928-018-9578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-018-9578-9

Keywords

Navigation