Skip to main content
Log in

A framework for 2-stage global sensitivity analysis of GastroPlus™ compartmental models

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Parameter sensitivity and uncertainty analysis for physiologically based pharmacokinetic (PBPK) models are becoming an important consideration for regulatory submissions, requiring further evaluation to establish the need for global sensitivity analysis. To demonstrate the benefits of an extensive analysis, global sensitivity was implemented for the GastroPlus™ model, a well-known commercially available platform, using four example drugs: acetaminophen, risperidone, atenolol, and furosemide. The capabilities of GastroPlus were expanded by developing an integrated framework to automate the GastroPlus graphical user interface with AutoIt and for execution of the sensitivity analysis in MATLAB®. Global sensitivity analysis was performed in two stages using the Morris method to screen over 50 parameters for significant factors followed by quantitative assessment of variability using Sobol’s sensitivity analysis. The 2-staged approach significantly reduced computational cost for the larger model without sacrificing interpretation of model behavior, showing that the sensitivity results were well aligned with the biopharmaceutical classification system. Both methods detected nonlinearities and parameter interactions that would have otherwise been missed by local approaches. Future work includes further exploration of how the input domain influences the calculated global sensitivity measures as well as extending the framework to consider a whole-body PBPK model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U.S. Food and Drug Administration Center for Drug Evaluation and Research (2016) Physiologically based pharmacokinetic analyses—format and content: guidance for industry, draft. U.S. Food and Drug Administration Center for Drug Evaluation and Research (CDER), Rockville, MD

  2. Chen GC, Enayati P, Tran T, Lee-Henderson M, Quan C, Dulai G, Arnott I, Sul J, Jutabha R (2006) Sensitivity and inter-observer variability for capsule endoscopy image analysis in a cohort of novice readers. World J Gastroenterol 12(8):1249–1254. https://doi.org/10.3748/wjg.v12.i8.1249

    Article  PubMed  PubMed Central  Google Scholar 

  3. Strategies, approaches, and challenges in model-informed drug development (MIDD) (2017). FDA briefing document—Pharmaceutical Science and Clinical Pharmacology Advisory Committee meeting, Rockville, MD

  4. WHO (2010) Harmonization project document no. 9: characterization and application of physiologically based pharmacokinetic models in risk assessment. World Health Organization International Programme on Chemical Safety Harmonization Project, Ottawa, ON

  5. McNally K, Cotton R, Loizou GD (2011) A workflow for global sensitivity analysis of PBPK models. Front Pharmacol 2:31. https://doi.org/10.3389/fphar.2011.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gueorguieva II, Nestorov IA, Rowland M (2004) Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of diazepam. J Pharmacokinet Pharmacodyn 31(3):185–213

    Article  CAS  PubMed  Google Scholar 

  7. Gueorguieva I, Nestorov I, Rowland M Reducing (2002) PBPK models using global sensitivity approach and benefit/cost criterion. In: Population Approach Group Europe, Paris, France

  8. Gueorguieva I, Nestorov IA, Rowland M (2006) Reducing whole body physiologically based pharmacokinetic models using global sensitivity analysis: diazepam case study. J Pharmacokinet Pharmacodyn 33(1):1–27. https://doi.org/10.1007/s10928-005-0004-8

    Article  CAS  PubMed  Google Scholar 

  9. Zhao P (2017) Report from the EMA workshop on qualification and reporting of physiologically based pharmacokinetic (PBPK) modeling and simulation. CPT Pharmacomet Syst Pharmacol 6(2):71–72. https://doi.org/10.1002/psp4.12166

    Article  CAS  Google Scholar 

  10. Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20. https://doi.org/10.1038/clpt.2012.68

    Article  CAS  PubMed  Google Scholar 

  11. Barton HA, Chiu WA, Setzer RW, Andersen ME, Bailer AJ, Bois FY, Dewoskin RS, Hays S, Johanson G, Jones N, Loizou G, Macphail RC, Portier CJ, Spendiff M, Tan YM (2007) Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation. Toxicol Sci 99(2):395–402. https://doi.org/10.1093/toxsci/kfm100

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe T, Kusuhara H, Sugiyama Y (2010) Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transporter-mediated distribution and clearance in humans. J Pharmacokinet Pharmacodyn 37(6):575–590. https://doi.org/10.1007/s10928-010-9176-y

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Panagi Z, Avgoustakis K, Reineke J (2012) Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomed 7:1345–1356. https://doi.org/10.2147/IJN.S23758

    Article  CAS  Google Scholar 

  14. Zhuang X, Lu C (2016) PBPK modeling and simulation in drug research and development. Acta Pharm Sin B 6(5):430–440. https://doi.org/10.1016/j.apsb.2016.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, Booth BP, Rahman NA, Reynolds KS, Gil Berglund E, Lesko LJ, Huang SM (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89(2):259–267. https://doi.org/10.1038/clpt.2010.298

    Article  CAS  PubMed  Google Scholar 

  16. Loizou G, Spendiff M, Barton HA, Bessems J, Bois FY, d’Yvoire MB, Buist H, Clewell HJ 3rd, Meek B, Gundert-Remy U, Goerlitz G, Schmitt W (2008) Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regul Toxicol Pharmacol 50(3):400–411. https://doi.org/10.1016/j.yrtph.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  17. Hartmanshenn C, Scherholz M, Androulakis IP (2016) Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 43(5):481–504. https://doi.org/10.1007/s10928-016-9492-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336. https://doi.org/10.1049/iet-syb.2011.0015

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Fernandez M, Banga JR, Francis J, Doyle I (2011) Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int J Robust Nonlinear Control 00:1–18. https://doi.org/10.1002/rnc.2797

    Google Scholar 

  20. Brochot C, Smith TJ, Bois FY (2007) Development of a physiologically based toxicokinetic model for butadiene and four major metabolites in humans: global sensitivity analysis for experimental design issues. Chem Biol Interact 167(3):168–183. https://doi.org/10.1016/j.cbi.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Tsamandouras N, Rostami-Hodjegan A, Aarons L (2015) Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79(1):48–55. https://doi.org/10.1111/bcp.12234

    Article  CAS  PubMed  Google Scholar 

  22. Cariboni J, Gatelli D, Liska R, Saltelli A (2007) The role of sensitivity analysis in ecological modelling. Ecol Model 203:167–182. https://doi.org/10.1016/j.ecolmodel.2005.10.045

    Article  Google Scholar 

  23. Makler-Pick V, Gal G, Gorfine M, Hipsey MR, Carmel Y (2011) Sensitivity analysis for complex ecological models—a new approach. Environ Model Softw 26:124–134. https://doi.org/10.1016/j.envsoft.2010.06.010

    Article  Google Scholar 

  24. Rodriguez-Fernandez M, Banga JR (2010) SensSB: a software toolbox for the development and sensitivity analysis of systems biology models. Bioinformatics 26(13):1675–1676. https://doi.org/10.1093/bioinformatics/btq242

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Cilfone NA, Large EM, Sarkar U, Wishnok JS, Tannenbaum SR, Hughes DJ, Lauffenburger DA, Griffith LG, Stokes CL, Cirit M (2015) Quantitative systems pharmacology approaches applied to microphysiological systems (MPS): data interpretation and multi-MPS integration. CPT Pharmacomet Syst Pharmacol 4(10):585–594. https://doi.org/10.1002/psp4.12010

    Article  CAS  Google Scholar 

  26. Cilfone NA, Pienaar E, Thurber GM, Kirschner DE, Linderman JJ (2015) Systems pharmacology approach toward the design of inhaled formulations of rifampicin and isoniazid for treatment of tuberculosis. CPT Pharmacomet Syst Pharmacol 4(3):193–203. https://doi.org/10.1002/psp4.22

    Article  Google Scholar 

  27. Malik PR, Hamadeh A, Phipps C, Edginton AN (2017) Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability. J Pharmacokinet Pharmacodyn 44(4):277–290. https://doi.org/10.1007/s10928-017-9515-3

    Article  CAS  PubMed  Google Scholar 

  28. Das D, Dhurjati P, Wangikar PP (2008) Prediction of pharmacokinetic behaviour by combining in vivo and in vitro data in physiologically based pharmacokinetic (PBPK) model parameter estimation and sensitivity analysis. J Indian Inst Sci 88(1):57–71

    CAS  Google Scholar 

  29. Chen K, Teo S, Seng KY (2009) Sensitivity analysis on a physiologically-based pharmacokinetic and pharmacodynamic model for diisopropylfluorophosphate-induced toxicity in mice and rats. Toxicol Mech Methods 19(8):486–497. https://doi.org/10.1080/15376510903300335

    Article  CAS  PubMed  Google Scholar 

  30. Ferretti F, Saltelli A, Tarantola S (2016) Trends in sensitivity analysis practice in the last decade. Sci Total Environ 568:666–670. https://doi.org/10.1016/j.scitotenv.2016.02.133

    Article  CAS  PubMed  Google Scholar 

  31. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarrantola S (2008) Global sensitivity analysis: the primer. Wiley, England

    Google Scholar 

  32. Nossent J, Elsen P, Bauwens W (2011) Sobol’ sensitivity analysis of a complex environmental model. Environ Model Softw 26(12):1515–1525. https://doi.org/10.1016/j.envsoft.2011.08.010

    Article  Google Scholar 

  33. Lumen A, McNally K, George N, Fisher JW, Loizou GD (2015) Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system. Front Pharmacol 6:107. https://doi.org/10.3389/fphar.2015.00107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Iooss B, Lemaitre P (2015) A review on global sensitivity analysis methods. In: Dellino G, Meloni C (eds) Uncertainty management in simulation-optimization of complex systems. Operations research/computer science interfaces series, vol 59. Springer, Boston, pp 101–122

    Google Scholar 

  35. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174. https://doi.org/10.2307/1269043

    Article  Google Scholar 

  36. Campolongo F, Saltelli A, Cariboni J (2011) From screening to quantitative sensitivity analysis. A unified approach. Comput Phys Commun 182:978–988. https://doi.org/10.1016/j.cpc.2010.12.039

    Article  CAS  Google Scholar 

  37. Garcia-Sanchez D, Lacarriere B, Musy M, Bourges B (2014) Application of sensitivity analysis in building every simulations: combining first- and second-order elementary effects methods. Energy Build 68:741–750. https://doi.org/10.1016/j.enbuild.2012.08.048

    Article  Google Scholar 

  38. GastroPlus(TM) (2015) Verision 9.0 simulation software for drug discovery and development—manual. Simulations Plus, Inc, Lancaster, CA

    Google Scholar 

  39. Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22:1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004

    Article  Google Scholar 

  40. Zhang XY, Trame MN, Lesko LJ, Schmidt S (2015) Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacomet Syst Pharmacol 4(2):69–79. https://doi.org/10.1002/psp4.6

    Article  CAS  Google Scholar 

  41. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181:259–270. https://doi.org/10.1016/j.cpc.2009.09.018

    Article  CAS  Google Scholar 

  42. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (2001) Guidance for industry: statistical approaches to establishing bioequivalence. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. https://www.fda.gov/downloads/drugs/guidances/ucm070244.pdf

  43. Singla NK, Parulan C, Samson R, Hutchinson J, Bushnell R, Beja EG, Ang R, Royal MA (2012) Plasma and cerebrospinal fluid pharmacokinetic parameters after single-dose administration of intravenous, oral, or rectal acetaminophen. Pain Pract 12(7):523–532. https://doi.org/10.1111/j.1533-2500.2012.00556.x

    Article  PubMed  Google Scholar 

  44. Liu Y, Zhang MQ, Jia JY, Liu YM, Liu GY, Li SJ, Wang W, Weng LP, Yu C (2013) Bioequivalence and pharmacokinetic evaluation of two formulations of risperidone 2 mg: an open-label, single-dose, fasting, randomized-sequence, two-way crossover study in healthy male Chinese volunteers. Drugs R D 13(1):29–36. https://doi.org/10.1007/s40268-012-0002-4

    Article  CAS  PubMed  Google Scholar 

  45. Sowinski KM, Forrest A, Wilton JH, Taylor AM 2nd, Wilson MF, Kazierad DJ (1995) Effect of aging on atenolol pharmacokinetics and pharmacodynamics. J Clin Pharmacol 35(8):807–814. https://doi.org/10.1002/j.1552-4604.1995.tb04124.x

    Article  CAS  PubMed  Google Scholar 

  46. Mason WD, Winer N, Krochak G, Cohen I, Bell R (1979) Kinetics and absolute bioavailability of atenolol. Clin Pharmacol Ther 25(4):408–415. https://doi.org/10.1002/cpt1979254408

    Article  CAS  PubMed  Google Scholar 

  47. Van Wart SA, Shoaf SE, Mallikaarjun S, Mager DE (2014) Population-based meta-analysis of furosemide pharmacokinetics. Biopharm Drug Dispos 35(2):119–133. https://doi.org/10.1002/bdd.1874

    Article  PubMed  Google Scholar 

  48. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C. In: The art of scientific computing, vol 2. Cambridge University Press, Cambridge, pp 309–315

  49. Bratley P, Fox BL (1988) Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans Math Softw 14(1):88–100

    Article  Google Scholar 

  50. Joe S, Kuo FY (2003) Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans Math Softw 29(1):49–57. https://doi.org/10.1145/641876.641879

    Article  Google Scholar 

  51. Hong HS, Hickernell FJ (2003) Algorithm 823: implementing scrambled digital sequences. ACM Trans Math Softw 29(2):95–109. https://doi.org/10.1145/779359.779360

    Article  Google Scholar 

  52. Matousek J (1998) On the L2-discrepancy for anchored boxes. J Complex 14(4):527–556. https://doi.org/10.1006/jcom.1998.0489

    Article  Google Scholar 

  53. Blower S, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 2:229–243. https://doi.org/10.2307/1403510

    Article  Google Scholar 

  54. Sinha VK, Snoeys J, Osselaer NV, Peer AV, Mackie C, Heald D (2012) From preclinical to human–prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos 33(2):111–121. https://doi.org/10.1002/bdd.1782

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y (2009) Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328(2):652–662. https://doi.org/10.1124/jpet.108.146647

    Article  CAS  PubMed  Google Scholar 

  56. Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B (2016) Evaluation of the GastroPlus advanced compartmental and transit (ACAT) model in early discovery. Pharm Res. https://doi.org/10.1007/s11095-016-1951-z

    PubMed  Google Scholar 

  57. Herman JD, Kollat JB, Reed PM, Wagener T (2013) Technical note: method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol Earth Syst Sc 17(7):2893–2903. https://doi.org/10.5194/hess-17-2893-2013

    Article  Google Scholar 

  58. Archer GEB, Saltelli A, Sobol IM (1997) Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J Stat Comput Sim 58(2):99–120. https://doi.org/10.1080/00949659708811825

    Article  Google Scholar 

  59. Menberg K, Heo Y, Choudhary R (2016) Sensitivity analysis methods for building energy models: comparing computational costs and extractable information. Energy Build 133:433–445. https://doi.org/10.1016/j.enbuild.2016.10.005

    Article  Google Scholar 

  60. Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, Snoeys J, Upreti VV, Zheng M, Hall SD (2015) Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther 97(3):247–262. https://doi.org/10.1002/cpt.37

    Article  CAS  PubMed  Google Scholar 

  61. Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22(1):11–23. https://doi.org/10.1007/s11095-004-9004-4

    Article  CAS  PubMed  Google Scholar 

  62. Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29(3–4):278–287. https://doi.org/10.1016/j.ejps.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  63. Yu LX (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25(4):781–791. https://doi.org/10.1007/s11095-007-9511-1

    Article  CAS  PubMed  Google Scholar 

  64. Wang B, Liu Z, Li D, Yang S, Hu J, Chen H, Sheng L, Li Y (2015) Application of physiologically based pharmacokinetic modeling in the prediction of pharmacokinetics of bicyclol controlled-release formulation in human. Eur J Pharm Sci 77:265–272. https://doi.org/10.1016/j.ejps.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  65. Kesisoglou F, Xia B, Agrawal NG (2015) Comparison of deconvolution-based and absorption modeling IVIVC for extended release formulations of a BCS III drug development candidate. AAPS J 17(6):1492–1500. https://doi.org/10.1208/s12248-015-9816-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wainwright HM, Finsterle S, Jung YJ, Zhou QL, Birkholzer JT (2014) Making sense of global sensitivity analyses. Comput Geosci 65:84–94. https://doi.org/10.1016/j.cageo.2013.06.006

    Article  Google Scholar 

  67. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196. https://doi.org/10.1016/j.jtbi.2008.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xia J, Zheng XG, Adili GZ, Wei YR, Ma WG, Xue XM, Mi XY, Yi Z, Chen SJ, Du W, Muhan M, Duhaxi C, Han T, Gudai B, Huang J (2016) Sequence analysis of peste des petits ruminants virus from ibexes in Xinjiang, China. Genet Mol Res 15(2):1–7. https://doi.org/10.4238/gmr.15027783

    Article  Google Scholar 

  69. Alqahtani S, Kaddoumi A (2015) Development of physiologically based pharmacokinetic/pharmacodynamic model for indomethacin disposition in pregnancy. PLoS ONE 10(10):1–18. https://doi.org/10.1371/journal.pone.0139762

    Article  CAS  Google Scholar 

  70. Zamora-Sillero E, Hafner M, Ibig A, Stelling J, Wagner A (2011) Efficient characterization of high-dimensional parameter spaces for systems biology. BMC Syst Biol 5(1):142–164. https://doi.org/10.1186/1752-0509-5-142

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Zilong Wong for support with implementation of global sensitivity methods. MS is supported by a Bristol-Myers Squibb Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Androulakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherholz, M.L., Forder, J. & Androulakis, I.P. A framework for 2-stage global sensitivity analysis of GastroPlus™ compartmental models. J Pharmacokinet Pharmacodyn 45, 309–327 (2018). https://doi.org/10.1007/s10928-018-9573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-018-9573-1

Keywords

Navigation