Skip to main content
Log in

Evaluation and calibration of high-throughput predictions of chemical distribution to tissues

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Toxicokinetics (TK) provides critical information for integrating chemical toxicity and exposure assessments in order to determine potential chemical risk (i.e., the margin between toxic doses and plausible exposures). For thousands of chemicals that are present in our environment, in vivo TK data are lacking. The publicly available R package “httk” (version 1.8, named for “high throughput TK”) draws from a database of in vitro data and physico-chemical properties in order to run physiologically-based TK (PBTK) models for 553 compounds. The PBTK model parameters include tissue:plasma partition coefficients (Kp) which the httk software predicts using the model of Schmitt (Toxicol In Vitro 22 (2):457–467, 2008). In this paper we evaluated and modified httk predictions, and quantified confidence using in vivo literature data. We used 964 rat Kp measured by in vivo experiments for 143 compounds. Initially, predicted Kp were significantly larger than measured Kp for many lipophilic compounds (log10 octanol:water partition coefficient > 3). Hence the approach for predicting Kp was revised to account for possible deficiencies in the in vitro protein binding assay, and the method for predicting membrane affinity was revised. These changes yielded improvements ranging from a factor of 10 to nearly a factor of 10,000 for 83 Kp across 23 compounds with only 3 Kp worsening by more than a factor of 10. The vast majority (92%) of Kp were predicted within a factor of 10 of the measured value (overall root mean squared error of 0.59 on log10-transformed scale). After applying the adjustments, regressions were performed to calibrate and evaluate the predictions for 12 tissues. Predictions for some tissues (e.g., spleen, bone, gut, lung) were observed to be better than predictions for other tissues (e.g., skin, brain, fat), indicating that confidence in the application of in silico tools to predict chemical partitioning varies depending upon the tissues involved. Our calibrated model was then evaluated using a second data set of human in vivo measurements of volume of distribution (Vss) for 498 compounds reviewed by Obach et al. (Drug Metab Dispos 36(7):1385–1405, 2008). We found that calibration of the model improved performance: a regression of the measured values as a function of the predictions has a slope of 1.03, intercept of − 0.04, and R2 of 0.43. Through careful evaluation of predictive methods for chemical partitioning into tissues, we have improved and calibrated these methods and quantified confidence for TK predictions in humans and rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, Wilson ME, Sutliff RL, Mansfield KG, Wachtman LM, Ziegler TR, Jones DP (2012) High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology 295(1–3):47–55. doi:10.1016/j.tox.2012.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rager JE, Strynar MJ, Liang S, McMahen RL, Richard AM, Grulke CM, Wambaugh JF, Isaacs KK, Judson R, Williams AJ, Sobus JR (2016) Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environ Int 88:269–280. doi:10.1016/j.envint.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  3. Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, Cathey T, Transue TR, Spencer R, Wolf M (2008) ACToR—aggregated computational toxicology resource. Toxicol Appl Pharmacol 233(1):7–13

    Article  CAS  PubMed  Google Scholar 

  4. National Research Council (1983) Risk assessment in the federal government: managing the process. National Academies Press, Washington, DC. doi:10.17226/317

    Google Scholar 

  5. Thomas RS, Philbert MA, Auerbach SS, Wetmore BA, Devito MJ, Cote I, Rowlands JC, Whelan MP, Hays SM, Andersen ME (2013) Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci 136(1):4–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wetmore BA, Wambaugh JF, Allen B, Ferguson SS, Sochaski MA, Setzer RW, Houck KA, Strope CL, Cantwell K, Judson RS, LeCluyse E, Clewell HJ, Thomas RS, Andersen ME (2015) Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicol Sci 148(1):121–136. doi:10.1093/toxsci/kfv171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals—a report by the transatlantic think tank for toxicology (t (4)). Altex 26(3):187–208

    Article  PubMed  Google Scholar 

  8. Pellegatti M (2014) The debate on animal ADME studies in drug development: an update. Exp Opin Drug Metab Toxicol 10(12):1615–1620

    Article  CAS  Google Scholar 

  9. Tolonen A, Pelkonen O (2013) Analytical challenges for conducting rapid metabolism characterization for QIVIVE. Toxicology. doi:10.1016/j.tox.2013.08.010

    PubMed  Google Scholar 

  10. Wambaugh JF, Wetmore BA, Pearce R, Strope C, Goldsmith R, Sluka JP, Sedykh A, Tropsha A, Bosgra S, Shah I, Judson R, Thomas RS, Setzer RW (2015) Toxicokinetic triage for environmental chemicals. Toxicol Sci 147(1):55–67. doi:10.1093/toxsci/kfv118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waters NJ, Jones R, Williams G, Sohal B (2008) Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci 97(10):4586–4595

    Article  CAS  PubMed  Google Scholar 

  12. Shibata Y, Takahashi H, Chiba M, Ishii Y (2002) Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab Dispos 30(8):892–896

    Article  CAS  PubMed  Google Scholar 

  13. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp® population-based ADME simulator. Exp Opin Drug Metab Toxicol 5(2):211–223

    Article  CAS  Google Scholar 

  14. Lukacova V, Woltosz WS, Bolger MB (2009) Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release, and intravenous data. AAPS J 11(2):323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y-H (2010) Confidence assessment of the Simcyp time-based approach and a static mathematical model in predicting clinical drug-drug interactions for mechanism-based CYP3A inhibitors. Drug Metab Dispos 38(7):1094–1104. doi:10.1124/dmd.110.032177

    Article  CAS  PubMed  Google Scholar 

  16. O’Flaherty EJ (1981) Toxicants and drugs: kinetics and dynamics. Wiley, New York

    Google Scholar 

  17. Andersen ME (1995) Development of physiologically based pharmacokinetic and physiologically based pharmacodymamic models for applications in toxicology and risk assessment. Toxicol Lett 79(1):35–44

    Article  CAS  PubMed  Google Scholar 

  18. Campbell JL, Clewell RA, Gentry PR, Andersen ME, Clewell HJ (2012) Physiologically based pharmacokinetic/toxicokinetic modeling. Comput Toxicol I:439–499

    Article  Google Scholar 

  19. Clewell HJ, Andersen ME (1985) Risk assessment extrapolations and physiological modeling. Toxicol Ind Health 1(4):111–134

    Article  CAS  PubMed  Google Scholar 

  20. Loizou GD, Hogg A (2011) MEGen: a physiologically based pharmacokinetic model generator. Front Pharmacol 2:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shiran M, Proctor N, Howgate E, Rowland-Yeo K, Tucker G, Rostami-Hodjegan A (2006) Prediction of metabolic drug clearance in humans: in vitro–in vivo extrapolation vs allometric scaling. Xenobiotica 36(7):567–580

    Article  CAS  PubMed  Google Scholar 

  22. Schmitt W (2008) General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro 22(2):457–467

    Article  CAS  PubMed  Google Scholar 

  23. Poulin P, Theil FP (2000) A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89(1):16–35

    Article  CAS  PubMed  Google Scholar 

  24. Payne MP, Kenny LC (2002) Comparison of models for the estimation of biological partition coefficients. J Toxicol Environ Health Part A 65(13):897–931

    Article  CAS  PubMed  Google Scholar 

  25. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95(6):1238–1257

    Article  CAS  PubMed  Google Scholar 

  26. Peyret T, Poulin P, Krishnan K (2010) A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol Appl Pharmacol 249(3):197–207

    Article  CAS  PubMed  Google Scholar 

  27. Ruark CD, Hack CE, Robinson PJ, Mahle DA, Gearhart JM (2014) Predicting passive and active tissue: plasma partition coefficients: interindividual and interspecies variability. J Pharm Sci 103(7):2189–2198

    Article  CAS  PubMed  Google Scholar 

  28. Zhu X-W, Sedykh A, Zhu H, Liu S-S, Tropsha A (2013) The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding. Pharm Res 30(7):1790–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ingle BL, Veber BC, Nichols JW, Tornero-Velez R (2016) Informing the human plasma protein binding of environmental chemicals by machine learning in the pharmaceutical space: applicability domain and limits of predictability. J Chem Inf Model 56(11):2243–2252

    Article  CAS  PubMed  Google Scholar 

  30. Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36(7):1385–1405

    Article  CAS  PubMed  Google Scholar 

  31. Pearce RG, Setzer RW, Strope CL, Sipes NS, Wambaugh JF (2017) Httk: R package for high-throughput toxicokinetics. J Stat Softw 79(1):1–26

    Google Scholar 

  32. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing,

  33. Pearce R, Strope C, Setzer RW, Sipes N, Wambaugh JF (2016) httk: r package for high-throughput toxicokinetics. J Stat Softw (in press)

  34. Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  35. Schmitt W (2008) Corrigendum to: “General approach for the calculation of tissue to plasma partition coefficients” [Toxicology in Vitro 22 (2008) 457–467]. Toxicol In Vitro 22(6):1666. doi:10.1016/j.tiv.2008.04.020

    Article  CAS  Google Scholar 

  36. Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94(6):1259–1276

    Article  CAS  PubMed  Google Scholar 

  37. Rodgers T, Leahy D, Rowland M (2005) Tissue distribution of basic drugs: Accounting for enantiomeric, compound and regional differences amongst β-blocking drugs in rat. J Pharm Sci 94(6):1237–1248

    Article  CAS  PubMed  Google Scholar 

  38. Gueorguieva I, Nestorov IA, Murby S, Gisbert S, Collins B, Dickens K, Duffy J, Hussain Z, Rowland M (2004) Development of a whole body physiologically based model to characterise the pharmacokinetics of benzodiazepines. 1: estimation of rat tissue-plasma partition ratios. J Pharmacokinet Pharmacodyn 31(4):269–298

    Article  CAS  PubMed  Google Scholar 

  39. Poulin P, Schoenlein K, Theil FP (2001) Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci 90(4):436–447

    Article  CAS  PubMed  Google Scholar 

  40. Björkman S (2002) Prediction of the volume of distribution of a drug: which tissue-plasma partition coefficients are needed? J Pharm Pharmacol 54(9):1237–1245

    Article  PubMed  Google Scholar 

  41. Yun Y, Edginton A (2013) Correlation-based prediction of tissue-to-plasma partition coefficients using readily available input parameters. Xenobiotica 43(10):839–852

    Article  CAS  PubMed  Google Scholar 

  42. Uchimura T, Kato M, Saito T, Kinoshita H (2010) Prediction of human blood-to-plasma drug concentration ratio. Biopharm Drug Dispos 31(5–6):286–297

    CAS  PubMed  Google Scholar 

  43. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10(7):1093–1095

    Article  CAS  PubMed  Google Scholar 

  44. Parham F, Kohn M, Matthews H, DeRosa C, Portier C (1997) Using structural information to create physiologically based pharmacokinetic models for all polychlorinated biphenyls: I. Tissue: blood partition coefficients. Toxicol Appl Pharmacol 144(2):340–347

    Article  CAS  PubMed  Google Scholar 

  45. Paixão P, Gouveia LF, Morais JA (2012) Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. Int J Pharm 429(1):84–98

    Article  PubMed  Google Scholar 

  46. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31(5):580–588

    Article  CAS  PubMed  Google Scholar 

  47. Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27(11):1350–1359

    CAS  PubMed  Google Scholar 

  48. Strope C, Mansouri K, Clewell H, Rabinowitz JR, Stevens C, Wambaugh JF (2017) High-throughput in-silico prediction of ionization equilibria for pharmacokinetic modeling. Sci Total Environ (in press)

  49. Strope CL, Mansouri K, Kancherla J, Stevens C, Wambaugh JF (2015) High-throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants. In: Society of toxicology annual meeting, San Diego, CA

  50. Poulin P, Haddad S (2012) Advancing prediction of tissue distribution and volume of distribution of highly lipophilic compounds from a simplified tissue-composition-based model as a mechanistic animal alternative method. J Pharm Sci 101(6):2250–2261

    Article  CAS  PubMed  Google Scholar 

  51. Snyder W, Cook M, Nasset E, Karhausen L, Howells G, Tipton I (1975) ICRP Publication 23: report of the task group on reference man. International Commission on Radiological Protection

  52. International Commission on Radiological Protection (1975) Report of the task group on reference man, vol 23. Pergamon, Oxford

  53. Endo S, Escher BI, Goss K-U (2011) Capacities of membrane lipids to accumulate neutral organic chemicals. Environ Sci Technol 45(14):5912–5921

    Article  CAS  PubMed  Google Scholar 

  54. Simulations Plus (2010) GastroPlus™ Manual California, EUA

  55. Simulations Plus (2017) ADMET Predictor

  56. Barton HA, Chiu WA, Setzer RW, Andersen ME, Bailer AJ, Bois FY, DeWoskin RS, Hays S, Johanson G, Jones N (2007) Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation. Toxicol Sci 99(2):395–402

    Article  CAS  PubMed  Google Scholar 

  57. McLanahan ED, El-Masri HA, Sweeney LM, Kopylev LY, Clewell HJ, Wambaugh JF, Schlosser PM (2012) Physiologically based pharmacokinetic model use in risk assessment: why being published is not enough. Toxicol Sci 126(1):5–15. doi:10.1093/toxsci/kfr295

    Article  CAS  PubMed  Google Scholar 

  58. Bois FY (1999) Analysis of PBPK models for risk characterization. Ann N Y Acad Sci 895(1):317–337

    Article  CAS  PubMed  Google Scholar 

  59. Hack CE (2006) Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models. Toxicology 221(2):241–248

    Article  CAS  PubMed  Google Scholar 

  60. Tsamandouras N, Rostami-Hodjegan A, Aarons L (2015) Combining the ‘bottom up’and ‘top down’approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79(1):48–55

    Article  CAS  PubMed  Google Scholar 

  61. Bois FY (2000) Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 108(Suppl 2):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liao KH, Tan YM, Conolly RB, Borghoff SJ, Gargas ML, Andersen ME, Clewell HJ (2007) Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. Risk Anal 27(6):1535–1551

    Article  PubMed  Google Scholar 

  63. Nong A, Tan Y-M, Krolski ME, Wang J, Lunchick C, Conolly RB, Clewell HJ III (2008) Bayesian calibration of a physiologically based pharmacokinetic/pharmacodynamic model of carbaryl cholinesterase inhibition. J Toxicol Environ Health Part A 71(20):1363–1381

    Article  CAS  PubMed  Google Scholar 

  64. Yang Y, Xu X, Georgopoulos PG (2010) A bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol 20(4):326–341

    Article  CAS  PubMed  Google Scholar 

  65. Evans M, Chiu W, Okino M, Caldwell J (2009) Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly. Toxicol Appl Pharmacol 236(3):329–340

    Article  CAS  PubMed  Google Scholar 

  66. Gelman A, Bois F, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 91(436):1400–1412

    Article  Google Scholar 

  67. Garcia RI, Ibrahim JG, Wambaugh JF, Kenyon EM, Setzer RW (2015) Identifiability of PBPK models with applications to dimethylarsinic acid exposure. J Pharmacokinet Pharmacodyn 42(6):591–609. doi:10.1007/s10928-015-9424-2

    Article  CAS  PubMed  Google Scholar 

  68. Tornero-Velez R, Davis J, Scollon E, Starr JM, Setzer RW, Goldsmith M, Chang D, Xue J, Zartarian V, DeVito MJ (2012) A pharmacokinetic model of cis-and trans-permethrin disposition in rats and humans with aggregate exposure application. Toxicol Sci 130:33–47

    Article  CAS  PubMed  Google Scholar 

  69. Tornero-Velez R, Davis J, Scollon EJ, Starr JM, Setzer RW, Goldsmith M-R, Chang DT, Xue J, Zartarian V, De Vito MJ (2012) A pharmacokinetic model of cis-and trans-permethrin disposition in rats and humans with aggregate exposure application. Toxicol Sci 130(1):33–47

    Article  CAS  PubMed  Google Scholar 

  70. Simon TW, Zhu Y, Dourson ML, Beck NB (2016) Bayesian methods for uncertainty factor application for derivation of reference values. Regul Toxicol Pharmacol 80:9–24. doi:10.1016/j.yrtph.2016.05.018

    Article  PubMed  Google Scholar 

  71. Box GE (1979) Robustness in the strategy of scientific model building. Robust Stat 1:201–236

    Article  Google Scholar 

  72. Oreskes N (1998) Evaluation (not validation) of quantitative models. Environ Health Perspect 106(Suppl 6):1453

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 44(6):1912–1928

    Article  CAS  PubMed  Google Scholar 

  74. Nagar S, Korzekwa K (2017) Drug distribution. Part 1. Models to predict membrane partitioning. Pharm Res 34(3):535–543

    Article  CAS  PubMed  Google Scholar 

  75. Korzekwa K, Nagar S (2017) Drug distribution part 2. Predicting volume of distribution from plasma protein binding and membrane partitioning. Pharm Res 34(3):544–551

    Article  CAS  PubMed  Google Scholar 

  76. Khor S, Mayersohn M (1991) Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling. Residual tissue blood. I. Theoretical considerations. Drug Metab Dispos 19(2):478–485

    CAS  PubMed  Google Scholar 

  77. Thompson MD, Beard DA, Wu F (2012) Use of partition coefficients in flow-limited physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn 39(4):313–327. doi:10.1007/s10928-012-9252-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Bruijn J, Busser F, Seinen W, Hermens J (1989) Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method. Environ Toxicol Chem 8(6):499–512. doi:10.1002/etc.5620080607

    Article  Google Scholar 

  79. Dionisio KL, Frame AM, Goldsmith M-R, Wambaugh JF, Liddell A, Cathey T, Smith D, Vail J, Ernstoff AS, Fantke P (2015) Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicol Rep 2:228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. The authors thank Drs. Hugh Barton and Rogelio Tornero-Velez for their helpful reviews of the manuscript. We also appreciate conversations with Drs. Weihsueh Chiu and Barbara Wetmore on protein binding.

Disclaimer

The United States Environmental Protection Agency, through its Office of Research and Development, funded and managed the research described here. However, it may not necessarily reflect official Agency policy, and reference to commercial products or services does not constitute endorsement.

Funding

Dr. Davis received no funding from Syngenta for this project, and Syngenta was not involved in the development or approval of this research or this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Wambaugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 123 kb)

Supplementary material 2 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearce, R.G., Setzer, R.W., Davis, J.L. et al. Evaluation and calibration of high-throughput predictions of chemical distribution to tissues. J Pharmacokinet Pharmacodyn 44, 549–565 (2017). https://doi.org/10.1007/s10928-017-9548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9548-7

Keywords

Navigation