Skip to main content

Advertisement

Log in

PK–PD Compass: bringing infectious diseases pharmacometrics to the patient’s bedside

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 February 2018

This article has been updated

Abstract

Antimicrobial stewardship programs face many challenges, one of which is a lack of guidance regarding antimicrobial dose, interval, and duration. There is no tool that considers patient demographic, pathogen susceptibility, and pharmacokinetic–pharmacodynamic (PK–PD) targets for efficacy in order to evaluate appropriate antimicrobial dosing regimens. The PK–PD Compass, an educational mobile application, was developed to address this unmet need. The application consists of a Monte Carlo simulation algorithm which integrates pharmacokinetic (PK) and PK–PD data, patient-specific characteristics, and pathogen susceptibility data. Through the integration of these data, the application allows practitioners to assess the percent probability of PK–PD target attainment for 35 intravenous antimicrobial agents across 29 infection categories. Population PK models for each drug were identified, evaluated, and refined as needed. Susceptibility breakpoints were based upon FDA and CLSI criteria. By incorporating these data into one interface, clinicians can select the infection, pathogen, and antimicrobial agents of interest and obtain the percent probability of PK–PD target attainment for each regimen based upon patient-specific characteristics. The antimicrobial dosing regimens provided include those recommended by standard guidelines and reference texts. However, unlike these references, potential choices are prioritized based on percent probabilities of PK–PD target attainment. Such data will educate clinicians on selecting optimized antibiotic regimens through the lens of PK–PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 14 February 2018

    The original version of this article contained incorrect Supplementary Files. The correct Supplementary Files are published with this erratum.

References

  1. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Implementing an antimicrobial stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:e51–e77

    Article  PubMed  PubMed Central  Google Scholar 

  2. CDC (2014) Core Elements of hospital antibiotic stewardship programs. US Department of Health and Human Services, CDC, Atlanta, GA. http://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html. Accessed 18 August 2016

  3. World Health Organization (2015) Global action plan on antimicrobial resistance. World Health Organization, Geneva. http://www.who.int/iris/handle/10665/193736. Accessed 18 August 2016

  4. Craig WA (1998) Pharmacokinetic/pharmacodynamics parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–12

    Article  CAS  PubMed  Google Scholar 

  5. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  CAS  PubMed  Google Scholar 

  6. Van Wart SA, Ambrose PG, Rubino CM, Khariton T, Riccobene TA, Friedland HD, Critchley IA, Bhavnani SM (2014) Pharmacokinetic-pharmacodynamic target attainment analyses to evaluate in vitro susceptibility test interpretive criteria for ceftaroline against Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 58:885-891

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJD, Armstrong DG, Deery HG, Embil JM, Joseph WS, Karchmer AW, Pinzur MS, Senneville E (2012) Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:132–173

    Article  Google Scholar 

  8. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJC, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC (2014) Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10–e52

    Article  PubMed  Google Scholar 

  9. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55

    Article  PubMed  Google Scholar 

  10. American Thoracic Society documents (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416

    Article  Google Scholar 

  11. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44:s27–s72

    Article  CAS  PubMed  Google Scholar 

  12. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJC, Baron EJ, O’Neill PJ, Chow AW, Dellinger EP, Eachempati SR, Gorbach S, Hilfiker M, May AK, Nathens AB, Sawyer RG, Bartlett JG (2010) Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the surgical infection society and in the Infectious Diseases Society of America. Clin Infect Dis 50:133–164

    Article  PubMed  Google Scholar 

  13. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Bolger AF, Levison ME, Ferrieri P, Gerber MA, Tani LY, Gewitz MH, Tong DC, Steckelberg JM, Baltimore RS, Shulman ST, Burns JC, Falace DA, Newburger JW, Pallasch TJ, Takahashi M, Taubert KA (2005) Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the committee on rheumatic fever, endocarditis, and Kawasaki disease, council on cardiovascular disease in the young, and the councils on clinical cardiology, stroke, and cardiovascular surgery and anesthesia, American heart association: endorsed by the Infectious Diseases Society of America. Circulation 111:e394–e434

    Article  PubMed  Google Scholar 

  14. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJA, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup, (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  16. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE (2010) Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–663

    Article  PubMed  Google Scholar 

  17. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120

    Article  PubMed  Google Scholar 

  18. Bulik CC, Bhavnani SM, Hammel JP, Forrest A, Dudley MN, Ellis-Grosse EJ, Drusano GL, Ambrose PG (2013) Evaluation of the probability of regulatory approval based on pre-clinical PK-PD target attainment for community-acquired and hospital-acquired pneumonia. A-295. In: 53rd InterScience conference on antimicrobial agents and chemotherapy, September 10–13, 2013, Denver CO

  19. Crandon JL, Banevicius MA, Nicolau DP (2009) Pharmacodynamics of tigecycline against phenotypically diverse Staphylococcus aureus isolates in a murine thigh model. Antimicrob Agents Chemother 53:1165–1169

    Article  CAS  PubMed  Google Scholar 

  20. Tygacil® [package insert]. Pfizer Canada Inc., Kirkland, Quebec (2014)

  21. van Ogtrop ML, Andes D, Stamstad TJ, Conklin B, Weiss WJ, Craig WA, Vesga O (2000) In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 44:943–949

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bhavnani SM, Rubino CM, Ambrose PG, Babinchak TJ, Korth-Bradley JM, Drusano GL (2010) Impact of different factors on the probability of clinical response in tigecycline-treated patients with intra-abdominal infections. Antimicrob Agents Chemother 54:1207–1212

    Article  CAS  PubMed  Google Scholar 

  23. Craig WA (2007) Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale CH, Ambrose PG, Drusano GL, Murakawa T (eds) Antimicrobial pharmacodynamics in theory and clinical practice, 2nd edn. Informa Healthcare USA, New York, pp 1–19

    Google Scholar 

  24. USCAST, The National Antimicrobial Susceptibility Testing Committee for the United States (2015) Quinolone in vitro susceptibility test interpretive criteria evaluations, Version 1.1 http://www.uscast.org. Accessed 20 June 2016

  25. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J (2004) Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 189:1590–1597

    Article  CAS  PubMed  Google Scholar 

  27. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45:2793–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhavnani SM, Forrest A, Hammel JP, Drusano GL, Rubino CM, Ambrose PG (2008) Pharmacokinetics-pharmacodynamics of quinolones against Streptococcus pneumoniae in patients with community-acquired pneumonia. Diagn Microbiol Infect Dis 62:99–101

    Article  CAS  PubMed  Google Scholar 

  29. LEVAQUIN® [package insert]. Janssen Pharmaceutical Inc., Titusville, NJ (2013)

  30. Ciprofloxacin [package insert]. Hospira, Inc., Lake Forest, IL (2013)

  31. Andes D, Craig WA (2006) Pharmacodynamics of a new cephalosporin, PPI-0903 (TAK-599), active against methicillin-resistant Staphylococcus aureus in murine thigh and lung infection models: identification of an in vivo pharmacokinetic-pharmacodynamic target. Antimicrob Agents Chemother 50:1376–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Housman ST, Keel RA, Crandon JL, Williams G, Nicolau DP (2012) Efficacy of human simulated exposures of ceftaroline against phenotypically diverse enterobacteriaceae isolates. Antimicrob Agents Chemother 56:2576–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clinical and Laboratory Standards Institute (2015) Performance standards for antimicrobial susceptibility testing. CLSI document: M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA

  34. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Wong FA, Corrado M (1998) Levofloxacin population pharmacokinetics and creation of a demographic model for prediction of individual drug clearance in patients with serious community-acquired infection. Antimicrob Agents Chemother 42:1095–1104

    Google Scholar 

  35. Peloquin CA, Hadad DJ, Molino LP, Palaci M, Boom WH, Dietze R, Johnson JL (2008) Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother 52:852–857

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Xu JF, Liu YB, Xiao ZK, Huang JA, Si B, Sun SH, Xia QM, Wu XJ, Cao GY, Shi YG, Zhang YY (2009) Population pharmacokinetics of oral levofloxacin 500 mg once-daily dosage in community-acquired lower respiratory tract infections: results of a prospective multicenter study in China. J Infect Chemother 15:293–300

    Article  PubMed  Google Scholar 

  37. Zhang Y, Zhu LQ, Wang N, Zhao X, Yang W, Ji S, Sun L (2014) Population pharmacokinetics of intravenous levofloxacin 500 mg/day dosage in infected patients. Pharmazie 69:553–557

    CAS  PubMed  Google Scholar 

  38. Tanigawara Y, Nomura H, Kagimoto N, Okumura K, Hori R (1995) Premarketing population pharmacokinetic study of levofloxacin in normal subjects and patients with infectious diseases. Biol Pharm Bull 18:315–320

    Article  CAS  PubMed  Google Scholar 

  39. Fish DN, Chow AT (1997) The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 32:101–119

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Van Wart SA, George DR, Trang M, Rubino CM (2015) Simplification of pharmacokinetic-pharmacodynamic target attainment analysis for antibiotics exhibiting nonlinear pharmacokinetics. A-987. In: 55th Interscience conference on antimicrobial agents and chemotherapy and the international congress of chemotherapy and infection, September 17–21, 2015, San Diego, CA

  41. Van Wart SA, Forrest A, Khariton T, Rubino CM, Bhavnani SM, Reynolds DK, Riccobene T, Ambrose PG (2013) Population pharmacokinetics of ceftaroline in patients with acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. J Clin Pharmacol 53:1155–1167

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharine C. Bulik.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10928-018-9572-2.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulik, C.C., Bader, J.C., Zhang, L. et al. PK–PD Compass: bringing infectious diseases pharmacometrics to the patient’s bedside. J Pharmacokinet Pharmacodyn 44, 161–177 (2017). https://doi.org/10.1007/s10928-017-9518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9518-0

Keywords

Navigation