Simulations of site-specific target-mediated pharmacokinetic models for guiding the development of bispecific antibodies

  • Vaishali L. Chudasama
  • Anup Zutshi
  • Pratap Singh
  • Anson K. Abraham
  • Donald E. Mager
  • John M. Harrold
Original Paper


Bispecific antibodies (BAbs) are novel constructs that are under development and show promise as new therapeutic modalities for cancer and autoimmune disorders. The aim of this study is to develop a semi-mechanistic modeling approach to elucidate the disposition of BAbs in plasma and possible sites of action in humans. Here we present two case studies that showcase the use of modeling to guide BAb development. In case one, a BAb is directed against a soluble and a membrane-bound ligand for treating systemic lupus erythematosus, and in case two, a BAb targets two soluble ligands as a potential treatment for ulcerative colitis and asthma. Model simulations revealed important differences between plasma and tissues, when evaluated for drug disposition and target suppression. Target concentrations at tissue sites and type (soluble vs membrane-bound), tissue-site binding, and binding affinity are all major determinants of BAb disposition and subsequently target suppression. For the presented case studies, higher doses and/or frequent dosing regimens are required to achieve 80 % target suppression in site specific tissue (the more relevant matrix) as compared to plasma. Site-specific target-mediated models may serve to guide the selection of first-in-human doses for new BAbs.


Bispecific antibodies Ulcerative colitis Asthma Systemic lupus erythematous Pharmacokinetics Pharmacodynamics 



We wish to thank Drs. Marion Kasaian and Joanne Brodfuehrer for critically reviewing this manuscript.

Conflict of interest

AZ, AKA, PS, are employees of Pfizer, Inc. JMH was an employee of Pfizer while the work was being performed. VLC and DEM declare no conflicts of interest.

Supplementary material

10928_2014_9401_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2574 kb)


  1. 1.
    Fagete S, Fischer N (2011) Smarter drugs: a focus on pan-specific monoclonal antibodies. BioDrugs 25:357–364PubMedCrossRefGoogle Scholar
  2. 2.
    Holmes D (2011) Buy buy bispecific antibodies. Nat Rev Drug Discov 10:798–800PubMedCrossRefGoogle Scholar
  3. 3.
    Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944PubMedCrossRefGoogle Scholar
  4. 4.
    Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558PubMedCrossRefGoogle Scholar
  5. 5.
    Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532PubMedCrossRefGoogle Scholar
  6. 6.
    Gibiansky L, Gibiansky E (2010) Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn 37:323–346PubMedCrossRefGoogle Scholar
  7. 7.
    Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL et al (2000) Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 176:181–193PubMedCrossRefGoogle Scholar
  8. 8.
    Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314PubMedCrossRefGoogle Scholar
  9. 9.
    Schiffer L, Kumpers P, Davalos-Misslitz AM, Haubitz M, Haller H et al (2009) B-cell-attracting chemokine CXCL13 as a marker of disease activity and renal involvement in systemic lupus erythematosus (SLE). Nephrol Dial Transplant 24:3708–3712PubMedCrossRefGoogle Scholar
  10. 10.
    Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548PubMedCrossRefGoogle Scholar
  11. 11.
    Yang JH, Zhang J, Cai Q, Zhao DB, Wang J et al (2005) Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44:1245–1254CrossRefGoogle Scholar
  12. 12.
    Beier KC, Hutloff A, Lohning M, Kallinich T, Kroczek RA et al (2004) Inducible costimulator-positive T cells are required for allergen-induced local B-cell infiltration and antigen-specific IgE production in lung tissue. J Allergy Clin Immunol 114:775–782PubMedCrossRefGoogle Scholar
  13. 13.
    Lee WI, Zhu Q, Gambineri E, Jin Y, Welcher AA et al (2003) Inducible CO-stimulator molecule, a candidate gene for defective isotype switching, is normal in patients with hyper-IgM syndrome of unknown molecular diagnosis. J Allergy Clin Immunol 112:958–964PubMedCrossRefGoogle Scholar
  14. 14.
    Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W et al (2006) Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107:3045–3052PubMedCrossRefGoogle Scholar
  15. 15.
    Lee HT, Shiao YM, Wu TH, Chen WS, Hsu YH et al (2010) Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol 37:45–52PubMedCrossRefGoogle Scholar
  16. 16.
    Her M, Kim D, Oh M, Jeong H, Choi I (2009) Increased expression of soluble inducible costimulator ligand (ICOSL) in patients with systemic lupus erythematosus. Lupus 18:501–507PubMedCrossRefGoogle Scholar
  17. 17.
    Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM (2011) Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 12:114PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Beltran CJ, Candia E, Erranz B, Figueroa C, Gonzalez MJ et al (2009) Peripheral cytokine profile in Chilean patients with Crohn’s disease and ulcerative colitis. Eur Cytokine Netw 20:33–38PubMedGoogle Scholar
  19. 19.
    Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640PubMedCrossRefGoogle Scholar
  20. 20.
    Oh CK, Geba GP, Molfino N (2010) Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 19:46–54PubMedCrossRefGoogle Scholar
  21. 21.
    Wills-Karp M, Finkelman FD (2008) Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal 1:55CrossRefGoogle Scholar
  22. 22.
    Zurawski SM, Chomarat P, Djossou O, Bidaud C, McKenzie AN et al (1995) The primary binding subunit of the human interleukin-4 receptor is also a component of the interleukin-13 receptor. J Biol Chem 270:13869–13878PubMedCrossRefGoogle Scholar
  23. 23.
    Milligan PA, Brown MJ, Marchant B, Martin SW, van der Graaf PH et al (2013) Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol Ther 93:502–514PubMedCrossRefGoogle Scholar
  24. 24.
    Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ et al (2007) Model-based drug development. Clin Pharmacol Ther 82:21–32PubMedCrossRefGoogle Scholar
  25. 25.
    Hu L, Hansen RJ (2013) Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci 102:2898–2908PubMedCrossRefGoogle Scholar
  26. 26.
    Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies-mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10:84–96PubMedGoogle Scholar
  27. 27.
    Stepensky D (2012) Local versus systemic anti-tumour necrosis factor-alpha effects of adalimumab in rheumatoid arthritis: pharmacokinetic modelling analysis of interaction between a soluble target and a drug. Clin Pharmacokinet 51:443–455PubMedCrossRefGoogle Scholar
  28. 28.
    (1997) RITUXAN FDA Package InsertGoogle Scholar
  29. 29.
    Kawakami K, Taguchi J, Murata T, Puri RK (2001) The interleukin-13 receptor alpha2 chain: an essential component for binding and internalization but not for interleukin-13-induced signal transduction through the STAT6 pathway. Blood 97:2673–2679PubMedCrossRefGoogle Scholar
  30. 30.
    Harrold JM, Abraham AK (2014) Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment. J Pharmacokinet Pharmacodyn 41:141–151PubMedCrossRefGoogle Scholar
  31. 31.
    Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X (2010) Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci 99:1028–1045PubMedGoogle Scholar
  32. 32.
    Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52:83–124PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang S, Liu C, Huang P, Zhou S, Ren J et al (2009) The affinity of human RANK binding to its ligand RANKL. Arch Biochem Biophys 487:49–53PubMedCrossRefGoogle Scholar
  34. 34.
    Chen PC, DuBois GC, Chen MJ (1995) Mapping the domain(s) critical for the binding of human tumor necrosis factor-alpha to its two receptors. J Biol Chem 270:2874–2878PubMedCrossRefGoogle Scholar
  35. 35.
    Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668PubMedCrossRefGoogle Scholar
  36. 36.
    Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709PubMedCrossRefGoogle Scholar
  37. 37.
    Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600PubMedCrossRefGoogle Scholar
  38. 38.
    Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86PubMedCrossRefGoogle Scholar
  39. 39.
    Abuqayyas L, Balthasar JP (2012) Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. J Pharmacokinet Pharmacodyn 39:683–710PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Shah DK, Betts AM (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5:297–305PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Siddiqui S, Mistry V, Doe C, Stinson S, Foster M et al (2010) Airway wall expression of OX40/OX40L and interleukin-4 in asthma. Chest 137:797–804PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    West GA, Matsuura T, Levine AD, Klein JS, Fiocchi C (1996) Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 110:1683–1695PubMedCrossRefGoogle Scholar
  43. 43.
    Vainer B, Nielsen OH, Hendel J, Horn T, Kirman I (2000) Colonic expression and synthesis of interleukin 13 and interleukin 15 in inflammatory bowel disease. Cytokine 12:1531–1536PubMedCrossRefGoogle Scholar
  44. 44.
    Mould DR, Green B (2010) Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs 24:23–39PubMedCrossRefGoogle Scholar
  45. 45.
    Metz DP, Mohn D, Zhang M, Horan T, Kim H et al (2009) Defining dose–response relationships in the therapeutic blockade of B7RP-1-dependent immune responses. Eur J Pharmacol 610:110–118PubMedCrossRefGoogle Scholar
  46. 46.
    Busse WW, Katial R, Gossage D, Sari S, Wang B et al (2010) Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol 125(1237–1244):e1232Google Scholar
  47. 47.
    Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:633–659PubMedCrossRefGoogle Scholar
  48. 48.
    Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614PubMedCrossRefGoogle Scholar
  49. 49.
    Boulanger MJ, Bankovich AJ, Kortemme T, Baker D, Garcia KC (2003) Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol Cell 12:577–589PubMedCrossRefGoogle Scholar
  50. 50.
    Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A et al (2007) Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 25:107–116PubMedCrossRefGoogle Scholar
  51. 51.
    Covell DG, Barbet J, Holton OD, Black CD, Parker RJ et al (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res 46:3969–3978PubMedGoogle Scholar
  52. 52.
    Conlon PJ, Tyler S, Grabstein KH, Morrissey P (1989) Interleukin-4 (B-cell stimulatory factor-1) augments the in vivo generation of cytotoxic cells in immunosuppressed animals. Biotechnol Ther 1:31–41PubMedGoogle Scholar
  53. 53.
    Khodoun M, Lewis CC, Yang JQ, Orekov T, Potter C et al (2007) Differences in expression, affinity, and function of soluble (s)IL-4Ralpha and sIL-13Ralpha2 suggest opposite effects on allergic responses. J Immunol 179:6429–6438PubMedCrossRefGoogle Scholar
  54. 54.
    Owen SG, Francis HW, Roberts MS (1994) Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br J Clin Pharmacol 38:349–355PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vaishali L. Chudasama
    • 1
  • Anup Zutshi
    • 2
  • Pratap Singh
    • 2
  • Anson K. Abraham
    • 2
  • Donald E. Mager
    • 1
  • John M. Harrold
    • 2
  1. 1.Department of Pharmaceutical SciencesUniversity at Buffalo, SUNYBuffaloUSA
  2. 2.Translational Modeling & Simulation, Department of Pharmacokinetics, Dynamics, and MetabolismPfizer Worldwide R&DCambridgeUSA

Personalised recommendations