Advertisement

Journal of Pharmacokinetics and Pharmacodynamics

, Volume 41, Issue 5, pp 445–459 | Cite as

A review of quantitative modeling of B cell responses to antigenic challenge

  • Timothy P. Hickling
  • Xiaoying Chen
  • Paolo Vicini
  • Satyaprakash Nayak
Review Paper

Abstract

A key role of B cells in the mammalian immune response is the generation of antibodies that serve to protect the organism against antigenic challenges. The same process may also be detrimental in the context of autoimmunity. Several modeling approaches have been applied to this aspect of the immune response, from predicting potential epitopes to describing B cells progress through developmental models and simulating antibody production. Here we review some of the modeling techniques, and summarize models that describe different activation mechanisms for B cells, including T cell dependent and independent models. We focus on viral infection as a prototype system, and briefly describe case studies in other disease areas such as bacterial infection and oncology. We single out aspects of the B cell response for which there are current knowledge gaps. We outline areas in need of further research in modeling applications to ultimately produce a “B cell module” for a complete immune response model.

Keywords

B cell receptors Affinity maturation Epitope recognition Agent based modeling Differential equations T cell dependent activation 

Notes

Acknowledgments

The authors are Pfizer employees and shareholders. The authors gratefully acknowledge Dr. Catherine Yeh’s support in implementing in MATLAB the published models used for the computer simulations.

References

  1. 1.
    MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139PubMedCrossRefGoogle Scholar
  2. 2.
    Rundell A et al (1998) The humoral immune response to Haemophilus influenzae type b: a mathematical model based on T-zone and germinal center B-cell dynamics. J Theor Biol 194(3):341–381PubMedCrossRefGoogle Scholar
  3. 3.
    Bell GI (1970) Mathematical model of clonal selection and antibody production. Nature 228(5273):739–744PubMedCrossRefGoogle Scholar
  4. 4.
    Klein P, Šterzl J, Doležal J (1981) A mathematical model of B lymphocyte differentiation: control by antigen. J Math Biol 13(1):67–86PubMedCrossRefGoogle Scholar
  5. 5.
    Funk GA et al (1998) Mathematical model of a virus-neutralizing immunglobulin response. J Theor Biol 195(1):41–52PubMedCrossRefGoogle Scholar
  6. 6.
    Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2(1):28–36PubMedCrossRefGoogle Scholar
  7. 7.
    Marino S, Kirschner DE (2004) The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol 227(4):463–486PubMedCrossRefGoogle Scholar
  8. 8.
    Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor–immune interaction. J Math Biol 37(3):235–252PubMedCrossRefGoogle Scholar
  9. 9.
    De Boer RJ et al (1985) Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. J Immunol 134(4):2748–2758PubMedGoogle Scholar
  10. 10.
    Chen X et al (2013) A mathematical model of the effect of immunogenicity on therapeutic protein Pharmacokinetics. AAPS J 15(4):1141–1154PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chen X, Hickling TP, Vicini P (2014) A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1—theoretical model. CPT: pharmacomet. syst. pharmacol. 3:e133Google Scholar
  12. 12.
    Chen X, Hickling TP, Vicini P (2014) A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 2—Model Applications. CPT: Pharmacomet Syst Pharmacol 3:e134Google Scholar
  13. 13.
    Nypaver CM et al (2010) Dynamics of human complement-mediated killing of klebsiella pneumoniae. Am J Respir Cell Mol Biol 43(5):585PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Castiglione F, Liso A (2005) The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 27(3):417–432PubMedCrossRefGoogle Scholar
  15. 15.
    Halling-Brown M et al (1920) ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale. Philos Transact R Soc A 2010(368):2799–2815Google Scholar
  16. 16.
    Bauer AL, Beauchemin CAA, Perelson AS (2009) Agent-based modeling of host-pathogen systems: the successes and challenges. Inf Sci 179(10):1379–1389CrossRefGoogle Scholar
  17. 17.
    Narang V et al (2012) Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol Res 53(1–3):251–265PubMedCrossRefGoogle Scholar
  18. 18.
    Kidd BA et al (2014) Unifying immunology with informatics and multiscale biology. Nat Immunol 15(2):118–127PubMedCrossRefGoogle Scholar
  19. 19.
    Brusic V et al (2014) Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat Biotech 32(2):146–148CrossRefGoogle Scholar
  20. 20.
    Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7(1):64PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Salimi N et al (2012) The immune epitope database: a historical retrospective of the first decade. Immunology 137(2):117–123PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zubler RH (2001) Naive and memory B cells in T-cell-dependent and T-independent responses. Springer Semin Immunopathol 23(4):405–419PubMedCrossRefGoogle Scholar
  23. 23.
    Dintzis HM, Dintzis RZ, Vogelstein B (1976) Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA 73(10):3671–3675PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dintzis RZ, Vogelstein B, Dintzis HM (1982) Specific cellular stimulation in the primary immune response: experimental test of a quantized model. Proc Natl Acad Sci USA 79(3):884–888PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dintzis RZ, Middleton MH, Dintzis HM (1983) Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol 131(5):2196–2203PubMedGoogle Scholar
  26. 26.
    Sulzer B, Perelson AS (1997) Immunons revisited: binding of multivalent antigens to B cells. Mol Immunol 34(1):63–74PubMedCrossRefGoogle Scholar
  27. 27.
    Sulzer B, Perelson AS (1996) Equilibrium binding of multivalent ligands to cells: effects of cell and receptor density. Math Biosci 135(2):147–185PubMedCrossRefGoogle Scholar
  28. 28.
    Bhanot G (2004) Results from modeling of B-Cell receptors binding to antigen. Prog Biophys Mol Biol 85(2–3):343–352PubMedCrossRefGoogle Scholar
  29. 29.
    Hat B, Kazmierczak B, Lipniacki T (2011) B cell activation triggered by the formation of the small receptor cluster: a computational study. PLoS Comput Biol 7(10):e1002197PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11:331–360PubMedCrossRefGoogle Scholar
  31. 31.
    Hege JS, Cole LJ (1966) A mathematical model relating circulating antibody and antibody forming cells. J Immunol 97(1):34–40PubMedGoogle Scholar
  32. 32.
    Jilek M, Ursinyova Z (1970) On the distribution of the epoch of the first contact of immunocompetent cell with antigen. Folia Microbiol 15(6):492–499CrossRefGoogle Scholar
  33. 33.
    Jilek M, Ursinyova Z (1970) The probability of contact between the immunocompetent cell and antigen. Folia Microbiol 15(4):294–302CrossRefGoogle Scholar
  34. 34.
    Jilek M (1971) The number of immunologically activated cells after repeated immunization. (A mathematical model). Folia Microbiol 16(1):12–23CrossRefGoogle Scholar
  35. 35.
    Bell GI (1970) Mathematical model of clonal selection and antibody production. J Theor Biol 29(2):191–232PubMedCrossRefGoogle Scholar
  36. 36.
    Bell GI (1971) Mathematical model of clonal selection and antibody production. II. J Theor Biol 33(2):339–378PubMedCrossRefGoogle Scholar
  37. 37.
    Bell GI (1971) Mathematical model of clonal selection and antibody production. 3. The cellular basis of immunological paralysis. J Theor Biol 33(2):378–398PubMedGoogle Scholar
  38. 38.
    Burnet FM (1959) The clonal selection theory of acquired immunity. The University Press, CambridgeGoogle Scholar
  39. 39.
    Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125C(1–2):373–389Google Scholar
  40. 40.
    Richter PH (1975) A network theory of the immune system. Eur J Immunol 5(5):350–354PubMedCrossRefGoogle Scholar
  41. 41.
    Hoffmann GW (1975) A theory of regulation and self-nonself discrimination in an immune network. Eur J Immunol 5(9):638–647PubMedCrossRefGoogle Scholar
  42. 42.
    de Boer RJ, Hogeweg P (1989) Idiotypic networks incorporating TB cell co-operation. The conditions for percolation. J Theor Biol 139(1):17–38PubMedCrossRefGoogle Scholar
  43. 43.
    Carneiro J et al (1996) A model of the immune network with B-T cell co-operation. I-Prototypical structures and dynamics. J Theor Biol 182(4):513–529PubMedCrossRefGoogle Scholar
  44. 44.
    Lee HY et al (2009) Simulation and prediction of the adaptive immune response to Influenza A virus infection. J Virol 83(14):7151–7165PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Motta S et al (2005) Modelling vaccination schedules for a cancer immunoprevention vaccine. Immunome Res 1(1):5PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kohler B et al (2000) A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system: I viral characteristics and polarized responses. Vaccine 19(7–8):862–876PubMedCrossRefGoogle Scholar
  47. 47.
    Folcik V, An G, Orosz C (2007) The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model 4(1):39PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rapin N et al (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5(4):e9862PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Pappalardo F et al (2009) ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief Bioinform 10(3):330–340PubMedCrossRefGoogle Scholar
  50. 50.
    Kepler TB, Perelson AS (1993) Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol Today 14(8):412–415PubMedCrossRefGoogle Scholar
  51. 51.
    Kepler TB, Perelson AS (1993) Somatic hypermutation in B cells: an optimal control treatment. J Theor Biol 164(1):37–64PubMedCrossRefGoogle Scholar
  52. 52.
    Oprea M, Perelson AS (1997) Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J Immunol 158(11):5155–5162PubMedGoogle Scholar
  53. 53.
    Kesmir C, De Boer RJ (1999) A mathematical model on germinal center kinetics and termination. J Immunol 163:2463–2469PubMedGoogle Scholar
  54. 54.
    Iber D, Maini PK (2002) A mathematical model for germinal centre kinetics and affinity maturation. J Theor Biol 219(2):153–175PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer-Hermann M (2002) A mathematical model for the germinal center morphology and affinity maturation. J Theor Biol 216:273–300PubMedCrossRefGoogle Scholar
  56. 56.
    Coffin JM (1995) HIV population dynamics in vivo - implications for genetic variation pathogenesis and therapy. Sciene 27(5197):483–489CrossRefGoogle Scholar
  57. 57.
    Nowak M, May RM (2000) Virus dynamics: mathematical principles of immunology and virology: mathematical principles of immunology and virology. Oxford university press, USAGoogle Scholar
  58. 58.
    Roberts RG (2013) HIV plays and wins a game of brinkmanship. PLoS Biol 11(4):e1001521PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Palsson S et al (2013) The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst Biol 7:95PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Moir S, Fauci AS (2009) B cells in HIV infection and disease. Nat Rev Immunol 9(4):235–245PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Rehermann B (2009) Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 119(7):1745–1754PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wieland SF, Chisari FV (2005) Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 79(15):9369–9380PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Malaspina A et al (2002) Human immunodeficiency virus Type 1 bound to B Cells: relationship to virus replicating in CD4+ T Cells and circulating in plasma. J Virol 76(17):8855–8863PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Moir S et al (2004) Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp Med 200(5):587–599CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kovacs JosephA et al (2001) Identification of dynamically distinct subpopulation of T lyphocytes that are differentially affected by HIV. J Exp Med 194(12):1731–1741PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nagase H et al (2001) Mechanism of hypergammaglobulinemia by HIV infection: circulating memory B-cell reduction with plasmacytosis. Clin Immunol 100(2):250–259PubMedCrossRefGoogle Scholar
  67. 67.
    Perelson AS, Kirschner DE, De Boer R (1993) Dynamics of HIV infection of CD4+ T cells. Math Biosci 114(1):81–125PubMedCrossRefGoogle Scholar
  68. 68.
    Nguyen L et al (2007) Modeling B Cell Dysfunction in HIV Infection. Arizona State University, Mathematical and Theoretical Biology InstituteGoogle Scholar
  69. 69.
    Alves BN et al (2014) IkappaBepsilon is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol 192(7):3121–3132PubMedCrossRefGoogle Scholar
  70. 70.
    Bunimovich-Mendrazitsky S, Claude Gluckman J, Chaskalovic J (2011) A mathematical model of combined bacillus Calmette-Guerin (BCG) and interleukin (IL)-2 immunotherapy of superficial bladder cancer. J Theor Biol 277(1):27–40PubMedCrossRefGoogle Scholar
  71. 71.
    Babbs CF (2012) Predicting success or failure of immunotherapy for cancer - insights from a clinically applicable mathematical model. Am J Cancer Res 2(2):204–213PubMedGoogle Scholar
  72. 72.
    Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Anderson AR et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Timothy P. Hickling
    • 1
  • Xiaoying Chen
    • 2
  • Paolo Vicini
    • 3
  • Satyaprakash Nayak
    • 4
  1. 1.Pharmacokinetics, Dynamics and Metabolism - New Biological EntitiesPfizerAndoverUSA
  2. 2.Pharmacokinetics, Dynamics and Metabolism - New Biological EntitiesPfizerCambridgeUSA
  3. 3.Pharmacokinetics, Dynamics and Metabolism - New Biological EntitiesPfizerSan DiegoUSA
  4. 4.Pharmacometrics, Global Clinical PharmacologyPfizerCambridgeUSA

Personalised recommendations