Allometric scaling of pegylated liposomal anticancer drugs

  • Whitney P. Caron
  • Harvey Clewell
  • Robert Dedrick
  • Ramesh K. Ramanathan
  • Whitney L. Davis
  • Ning Yu
  • Margaret Tonda
  • Jan H. Schellens
  • Jos H. Beijnen
  • William C. Zamboni


Pegylated liposomal formulations contain lipid conjugated to polyethylene glycol. The disposition of encapsulated drug is dictated by the composition of the liposome, thus altering the pharmacokinetic (PK) profile of the drug. Allometric scaling is based on a power-log relationship between body weight (W) and drug clearance (CL) among mammals and has been used to compare the disposition of nonliposomal drugs across species. The objectives of this study were to use allometric scaling to: (1) compare the disposition of pegylated liposomal drugs across speciesand determine the best scaling model and (2) predict PK parameters of pegylated liposomal drugs in humans. The PK of pegylated liposomal CKD-602 (S-CKD602), doxorubicin (Doxil®), and cisplatin (SPI-077) were compared. PK studies ofS-CKD602, Doxil®, and SPI-077 were performed at the maximum tolerated dose (MTD) in male and female mice, rats, dogs and patients with refractory solid tumors. The allometric equation used to evaluate the relationship between W and CL in each species was CL = a(W)m (a = empirical coefficient; m = allometric exponent). Substitution of physiological variables other than body weight, such as factors representative of the mononuclear phagocyte system (MPS) were evaluated. Dedrick Plots and Maximum Life-Span Potential (MLP) were used to determine scaling feasibility. Standard allometry demonstrated a relationship between clearance of S-CKD602, Doxil®, and SPI-077 and body, spleen, liver, and kidney weights, total monocyte count, and spleen and liver blood flow. However, using scaling to predict CL of these agents in humans often resulted in differences >30%. Despite a strong correlation between body weight and MPS-associated variables with CL among preclinical species, the use of the equations did not predict CL. Thus, new methods of allometric scaling and measures of MPS function need to be developed.


Allometric Dedrick Plot Pegylated liposomes Anticancer drugs Preclinical Mononuclear phagocyte system (MPS) 



The authors would like to thank Jerry Campbelland Miyoung Yoonof the Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina for their helpful comments and suggestions during this study.

Supplementary material

10928_2011_9213_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 39 kb)
10928_2011_9213_MOESM2_ESM.pptx (412 kb)
Supplementary material 2 (PPTX 412 kb)


  1. 1.
    Jain RK (1996) Delivery of molecular medicine to solid tumors. Science 271(5252):1079–1080PubMedCrossRefGoogle Scholar
  2. 2.
    Zamboni WC, Houghton PJ, Hulstein JL, Kirstein M, Walsh J, Cheshire PK, Hanna SK, Danks MK, Stewart CF (1999) Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines. Cancer Chemother Pharmacol 43(4):269–276PubMedCrossRefGoogle Scholar
  3. 3.
    Blochl-Daum B, Muller M, Meisinger V, Eichler HG, Fassolt A, Phemaberger H (1996) Measurement of extracellular fluid carboplatin kinetics in melanoma metastases with microdialysis. Br J Cancer 73(7):920–924PubMedCrossRefGoogle Scholar
  4. 4.
    Muller M, Mader RM, Steiner B, Steger GG, Jansen B, Gnant M, Helbich T, Jakesz R, Eichler HG, Blochl-Daum B (1997) 5-fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res 57(13):2598–2601PubMedGoogle Scholar
  5. 5.
    Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743PubMedGoogle Scholar
  6. 6.
    Zamboni WC (2005) Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin Cancer Res 11(23):8230–8234PubMedCrossRefGoogle Scholar
  7. 7.
    Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88(24):11460–11464PubMedCrossRefGoogle Scholar
  8. 8.
    D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57(15):2147–2162PubMedCrossRefGoogle Scholar
  9. 9.
    Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 31(6 Suppl 13):5–15PubMedCrossRefGoogle Scholar
  10. 10.
    Allen TM, Stuart DD. Liposome pharmacokinetics: Classical, sterically-stabilized, cationic liposomes and immunoliposomes. In: Janoff AS (ed) Liposomes: rational design. Marcel Dekker, Inc., New York, pp 63–87Google Scholar
  11. 11.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284PubMedCrossRefGoogle Scholar
  12. 12.
    Lee JH, Lee JM, Lim KH, Kim JK, Ahn SK, Bang YJ, Hong CI (2000) Preclinical and phase I clinical studies with CKD-602, a novel camptothecin derivative. Ann NY Acad Sci 922:324–325PubMedCrossRefGoogle Scholar
  13. 13.
    Zamboni WC, Strychor S, Joseph E, Walsh DR, Zamboni BA, Parise RA, Tonda ME, Yu NY, Engbers C, Eiseman JL (2007) Plasma, tumor and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin Cancer Res 13(23):7217–7223PubMedCrossRefGoogle Scholar
  14. 14.
    Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436PubMedCrossRefGoogle Scholar
  15. 15.
    Gabizon A, Isacson R, Rosengarten O, Tzemach D, Shmeeda H, Sapir R (2008) An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 61(4):695–702PubMedCrossRefGoogle Scholar
  16. 16.
    Meerum Terwogt JM, Groenewegen G, Pluim D, Maliepaard M, Tibben MM, Huisman A, ten Bokkel Huinink WW, Schot M, Welbank H, Voest EE, Beijnen JH, Schellens JM (2002) Phase I and pharmacokinetic study of SPI-77, a liposomal encapsulated dosage form of cisplatin. Cancer Chemother Pharmacol 49(3):201–210PubMedCrossRefGoogle Scholar
  17. 17.
    Meerum Terwogt JM, Tibbem MM, Wellbank H, Schellens JH, Beijnen JH (2000) Validated method for the determination of platinum from a liposomal source (SPI-77) in human plasma using graphite furnace Zeeman atomic absorption spectrometry. Fresenius J Anal Chem 366(3):298–302PubMedCrossRefGoogle Scholar
  18. 18.
    Mahmood I, Balian JD (1999) The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin Pharmacokinet 36(1):1–11PubMedCrossRefGoogle Scholar
  19. 19.
    Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metab Dispos 23(10):1008–1021PubMedGoogle Scholar
  20. 20.
    Lindstedt L, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters of mammals. Lab Anim 36(1):1–19PubMedCrossRefGoogle Scholar
  21. 21.
    Mahmood I, Balian JD (1996) Interspecies scaling: predicting clearance of drugs in humans. Xenobiotica 26(9):887–895PubMedCrossRefGoogle Scholar
  22. 22.
    McNamara PG (1991) Interspecies scaling in pharmacokinetics. In: Welling PG, Tse FLS, Dighe SV (eds) Pharmaceutical bioequivalence. Marcel Dekker Inc, New York, pp 276–300Google Scholar
  23. 23.
    Boxenbaum H (1984) Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab Rev 15(5–6):1071–1121PubMedCrossRefGoogle Scholar
  24. 24.
    Sacher G (1959) Relation of lifespan to brain weight and body weight in mammals. In: Wolstenholme GEW, O’Connor M (eds) CIBA Foundation colloquia on aging. Churchill, London, pp 115–133Google Scholar
  25. 25.
    Boxenbaum H, Ronfeld R (1983) Interspecies pharmacokinetic scaling and the Dedrick plots. Am J Physiol 245(6):768–777Google Scholar
  26. 26.
    Dedrick R, Bischoff KB, Zaharko DS (1970) Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother Rep 54(2):95–101PubMedGoogle Scholar
  27. 27.
    Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10(2):201–227PubMedCrossRefGoogle Scholar
  28. 28.
    Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484PubMedGoogle Scholar
  29. 29.
    Food and Drug Administration (2003) Draft guidance for industry and reviewers on estimating the safe starting dose in clinical trials for therapeutics in adult healthy volunteers. Fed Regist 68:2340–2341Google Scholar
  30. 30.
    Schneider K, Oltmanns J, Hassauer M (2004) Allometric principles for interspecies extrapolation in toxicological risk assessment—empirical investigations. Regul Toxicol Pharmacol 39(3):334–347PubMedCrossRefGoogle Scholar
  31. 31.
    Sweeting JN, Siu M, McCallum GP, Miller L, Wells PG (2010) Species differences in methanol and formic acid pharmacokinetics in mice, rabbits and primates. Toxicol Appl Pharmacol 247(1):28–35PubMedCrossRefGoogle Scholar
  32. 32.
    Toutain PL, Ferran A, Bousquet-Melou A (2010) Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol 199:19–48PubMedCrossRefGoogle Scholar
  33. 33.
    Hunter RP (2010) Interspecies allometric scaling. Handb Exp Pharmacol 199:139–157PubMedCrossRefGoogle Scholar
  34. 34.
    Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461PubMedCrossRefGoogle Scholar
  35. 35.
    Calder WA (1984) Size, function and life history. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  36. 36.
    Yamato O, Hayashi M, Kasai E, Tajima M, Yamasaki M, Maede Y (1999) Reduced glutathione accelerates the oxidative damage produced by sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs. Biochem Biophys Acta 1427(2):175–182PubMedGoogle Scholar
  37. 37.
    Tang H, Mayersohn M (2011) Controversies in allometric scaling for predicting human drug clearance: an historical problem and reflections on what works and what does not. Curr Top Med Chem 11(4):340–350PubMedCrossRefGoogle Scholar
  38. 38.
    Quigley KA, Chelack BJ, Haines DM, Jackson ML (2001) Application of a direct flow cytometric erythrocyte immunofluorescence assay in dogs with immune-mediated hemolytic anemia and comparison to the direct antiglobulin test. J Vet Diagn Invest 13(4):297–300PubMedCrossRefGoogle Scholar
  39. 39.
    Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP, Kim J, Bang Y, Lee H, Friedland DM, Stoller RG, Belani CP, Ramanathan RK (2010) Bidirectional pharmacodynamics interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res 21(2):158–165PubMedCrossRefGoogle Scholar
  40. 40.
    Duncan JR, Prusse KW, Mahaffey EA (1994) Veterinary laboratory medicine clinical pathology, 3rd edn. Iowa State Univ Press, Ames, Iowa, p 235Google Scholar
  41. 41.
    Treseler KM (1995) Clinical laboratory and diagnostic tests, 3rd edn. Appleton and Lange, Norwalk, Connecticut, p 117Google Scholar
  42. 42.
    Fischbach F (2004) A manual of laboratory diagnostic tests, 7th edn. Lippincottand Wilkins, Philadelphia, Pennsylvania, p 47Google Scholar
  43. 43.
    Sharp PE, LaRegina MC (1998) The laboratory rat. CRC Press, Boston, Massachussetts, pp 4–11Google Scholar
  44. 44.
    Zamboni WC, Strychor S, Maruca L, Ramalingam S, Zamboni BA, Wu H, Friedland DM, Edwards RP, Stroller RG, Belani CP, Ramanathan RK (2009) Pharmacokinetic study of pegylated liposomal CKD-602 (S-CKD602) in patients with advanced malignancies. Clin Pharmacol Ther 86(5):519–526PubMedCrossRefGoogle Scholar
  45. 45.
    Wu H, Infante JR, Jones SF, Burris HA, Chan E, Keedy VL, Bendell JC, Zamboni BA, Kodaira H, Ikeda S, Zamboni WC (2009) Factors affecting the pharmacokinetics (PK) and pharmacodynamics (PD) of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors. Mol Cancer Ther 8(12):C124Google Scholar
  46. 46.
    Li M, Al-Jamal KT, Kosarelos K, Reineke J (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4(11):3617–6303Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Whitney P. Caron
    • 1
  • Harvey Clewell
    • 2
  • Robert Dedrick
    • 3
  • Ramesh K. Ramanathan
    • 4
  • Whitney L. Davis
    • 1
  • Ning Yu
    • 5
  • Margaret Tonda
    • 5
  • Jan H. Schellens
    • 6
  • Jos H. Beijnen
    • 6
  • William C. Zamboni
    • 1
    • 7
    • 8
    • 9
    • 10
  1. 1.Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.The Hamner Institute for Health Sciences, Research Triangle ParkDurhamUSA
  3. 3.U.S. Department of Health, Education, and WelfareNational Institutes of Health, Public Health ServiceBethesdaUSA
  4. 4.Molecular Therapeutics and Drug Discovery ProgramUniversity of Pittsburgh Cancer InstitutePittsburghUSA
  5. 5.ALZA CorporationMountain ViewUSA
  6. 6.Department of Clinical PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  7. 7.UNC Lineberger Comprehensive Cancer CenterUniversity of North Carolina (UNC) at Chapel HillChapel HillUSA
  8. 8.UNC Institute for Pharmacogenomics and Individualized TherapyUniversity of North Carolina (UNC) at Chapel HillChapel HillUSA
  9. 9.UNC Center of Cancer Nanotechnology ExcellenceUniversity of North Carolina (UNC) at Chapel HillChapel HillUSA
  10. 10.North Carolina Medical Innovation NetworkUniversity of North Carolina (UNC) at Chapel HillChapel HillUSA

Personalised recommendations