Journal of Pharmacokinetics and Pharmacodynamics

, Volume 37, Issue 5, pp 475–491 | Cite as

An example of optimal phase II design for exposure response modelling

  • Alan Maloney
  • Marloes Schaddelee
  • Jan Freijer
  • Walter Krauwinkel
  • Marcel van Gelderen
  • Philippe Jacqmin
  • Ulrika S. H. Simonsson


This paper presents an example of how optimal design methodology was used to help design a phase II clinical study. The planned analysis would relate the clinical endpoint to exposure (measured via the area under the curve (AUC)), rather than dose. Optimal design methodology was used to compare a number of candidate phase II designs, and an algorithm for finding optimal designs was employed. The sigmoidal Emax with baseline (E0) model was used to relate the clinical endpoint to individual subject AUCs, and the primary metrics were D optimality and the standard error (SE) of the AUC required to yield a clinically relevant change in the clinical endpoint. The performance of the candidate designs were compared across four different ‘true’ exposure response relationships (determined from the analysis of an earlier proof of concept (PoC) study). The results suggested the total sample size should be increased from the planned 540 individuals, and that the optimal design with 700 individuals would be equivalent to 812 individuals with the reference design (a 16% gain). The performance with this design was considered acceptable, although all designs performed poorly if the true exposure response relationship was very flat. This work allowed a prospective assessment of the likely performance and precision from the exposure response modelling prior to the start of the phase II study, and hence allowed the design to be revised to ensure the subsequent analysis would be of most value.


Exposure response Optimal design Emax model Phase II clinical trial 



The authors would like to thank Leon Aarons for his valuable comments on an early draft of this manuscript, and three reviewers for their detailed observations and advice.


  1. 1.
    Sheiner L (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61:275–291CrossRefPubMedGoogle Scholar
  2. 2.
    Exposure-response relationships: study design, data analysis, and regulatory applications. FDA Guidance for Industry, April 2003.
  3. 3.
    Gieschke R et al (1999) Relationships between exposure to saquinavir monotherapy and antiviral response in HIV-positive patients. Clin Pharmacokinet 37(1):75–86CrossRefPubMedGoogle Scholar
  4. 4.
    Hutmacher MM et al (2007) Modeling the exposure-response relationship of etanercept in the treatment of patients with chronic moderate to severe plaque psoriasis. J Clin Pharmacol 47(2):238–248CrossRefPubMedGoogle Scholar
  5. 5.
    Sheiner LB (1989) Clinical pharmacology and the choice between theory and empiricism. Clin Pharmacol Ther 46(6):605–615CrossRefPubMedGoogle Scholar
  6. 6.
    Atkinson AC, Donev AN (1992) Optimum experimental designs. Oxford statistical science series; 8, vol xv. Oxford University Press, Oxford, 328 pGoogle Scholar
  7. 7.
    Ratkowsky DA, Reedy TJ (1986) Choosing near-linear parameters in the four-parameter logistic model for radioligand and related assays. Biometrics 42(3):575–582CrossRefPubMedGoogle Scholar
  8. 8.
    Gabrielsson JL, Weiner DL (1999) Methodology for pharmacokinetic/pharmacodynamic data analysis. Pharm Sci Technol Today 2(6):244–252CrossRefPubMedGoogle Scholar
  9. 9.
    Holford NH, Sheiner LB (1981) Understanding the dose-effect relationship: clinical application of pharmacokinetic–pharmacodynamic models. Clin Pharmacokinet 6(6):429–453CrossRefPubMedGoogle Scholar
  10. 10.
    Matthews JN, Allcock GC (2004) Optimal designs for Michaelis–Menten kinetic studies. Stat Med 23(3):477–491CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy EF, Gilmour SG, Crabbe MJC (2003) Efficient and accurate experimental design for enzyme kinetics: Bayesian studies reveal a systematic approach. J Biochem Biophys Methods 55(2):155–178CrossRefPubMedGoogle Scholar
  12. 12.
    Bezeau M, Endrenyi L (1986) Design of experiments for the precise estimation of the dose–response parameters: the Hill equation. J Theor Biol 123:415–430CrossRefPubMedGoogle Scholar
  13. 13.
    Khinkis LA et al (2003) Optimal design for estimating parameters of the 4-parameter hill model. Nonlinearity Biol Toxicol Med 1(3):363–377CrossRefPubMedGoogle Scholar
  14. 14.
    Dette H, Melas VB, Pepelyshev A (2003) Standardized maximin E-optimal designs for Michaelis–Menten model. Stat Sin 13:1147–1163Google Scholar
  15. 15.
    Krzyzanski W et al (2006) Assessment of dosing impact on intra-individual variability in estimation of parameters for basic indirect response models. J Pharmacokinet Pharmacodyn 33(5):635–655CrossRefPubMedGoogle Scholar
  16. 16.
    Khinkis LA et al (2009) D-optimal designs for parameter estimation for indirect pharmacodynamic response models. J Pharmacokinet Pharmacodyn 36(6):523–539CrossRefPubMedGoogle Scholar
  17. 17.
    Mentre F, Mallet A, Baccar D (1997) Optimal design in random-effects regression models. Biometrika 84(2):429–442CrossRefGoogle Scholar
  18. 18.
    Dokoumetzidis A, Aarons L (2007) Bayesian optimal designs for pharmacokinetic models: sensitivity to uncertainty. J Biopharm Stat 17(5):851–867CrossRefPubMedGoogle Scholar
  19. 19.
    Gueorguieva I et al (2006) Optimal design for multivariate response pharmacokinetic models. J Pharmacokinet Pharmacodyn 33(2):97–124CrossRefPubMedGoogle Scholar
  20. 20.
    Bretz F et al (2008) Dose finding—a challenge in statistics. Biom J 50(4):480–504CrossRefPubMedGoogle Scholar
  21. 21.
    Bretz F, Dette H, Pinheiro JC (2010) Practical considerations for optimal designs in clinical dose finding studies. Stat Med 29(7–8):731–742CrossRefPubMedGoogle Scholar
  22. 22.
    Bretz F, Pinheiro JC, Branson M (2005) Combining multiple comparisons and modeling techniques in dose–response studies. Biometrics 61(3):738–748CrossRefPubMedGoogle Scholar
  23. 23.
    Thomas N (2006) Hypothesis testing and Bayesian estimation using a sigmoid Emax model applied to sparse dose–response designs. J Biopharm Stat 16(5):657–677CrossRefPubMedGoogle Scholar
  24. 24.
    Pinheiro J, Bornkamp B, Bretz F (2006) Design and analysis of dose-finding studies combining multiple comparisons and modeling procedures. J Biopharm Stat 16(5):639–656CrossRefPubMedGoogle Scholar
  25. 25.
    Bornkamp B et al (2007) Innovative approaches for designing and analyzing adaptive dose-ranging trials. J Biopharm Stat 17(6):965–995CrossRefPubMedGoogle Scholar
  26. 26.
    Berry DA et al (2002) Adaptive Bayesian designs for dose-ranging drug trials. Lecture Notes in Statist. In: Case studies in Bayesian statistics V. Springer, New York, pp 99–181Google Scholar
  27. 27.
    Golub HL (2006) The need for more efficient trial designs. Stat Med 25(19):3231–3235CrossRefPubMedGoogle Scholar
  28. 28.
    Maloney A, Karlsson MO, Simonsson US (2007) Optimal adaptive design in clinical drug development: a simulation example. J Clin Pharmacol 47(10):1231–1243CrossRefPubMedGoogle Scholar
  29. 29.
    Bretz F et al (2009) Adaptive designs for confirmatory clinical trials. Stat Med 28(8):1181–1217CrossRefPubMedGoogle Scholar
  30. 30.
    SAS Institute Inc., Cary, NC, USAGoogle Scholar
  31. 31.
    Fedorov VV (1972) Theory of optimal experiments. Academic, New YorkGoogle Scholar
  32. 32.
    Billingsley P (1986) Probability and measure, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alan Maloney
    • 1
    • 2
  • Marloes Schaddelee
    • 3
  • Jan Freijer
    • 3
  • Walter Krauwinkel
    • 3
  • Marcel van Gelderen
    • 3
  • Philippe Jacqmin
    • 2
  • Ulrika S. H. Simonsson
    • 1
  1. 1.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  2. 2.Exprimo NVMechelenBelgium
  3. 3.Astellas Pharma EuropeLeiderdorpThe Netherlands

Personalised recommendations