Advertisement

Estimation of Population Pharmacokinetic Parameters of Saquinavir in HIV Patients with the MONOLIX Software

  • Marc Lavielle
  • France Mentré
Article

In nonlinear mixed-effects models, estimation methods based on a linearization of the likelihood are widely used although they have several methodological drawbacks. Kuhn and Lavielle (Comput. Statist. Data Anal. 49:1020–1038 (2005)) developed an estimation method which combines the SAEM (Stochastic Approximation EM) algorithm, with a MCMC (Markov Chain Monte Carlo) procedure for maximum likelihood estimation in nonlinear mixed-effects models without linearization. This method is implemented in the Matlab software MONOLIX which is available at http://www.math.u-psud.fr/~lavielle/monolix/logiciels. In this paper we apply MONOLIX to the analysis of the pharmacokinetics of saquinavir, a protease inhibitor, from concentrations measured after single dose administration in 100 HIV patients, some with advance disease. We also illustrate how to use MONOLIX to build the covariate model using the Bayesian Information Criterion. Saquinavir oral clearance (CL/F) was estimated to be 1.26 L/h and to increase with body mass index, the inter-patient variability for CL/F being 120%. Several methodological developments are ongoing to extend SAEM which is a very promising estimation method for population pharmacockinetic/pharmacodynamic analyses.

Keywords

EM algorithm nonlinear mixed-effects models stochastic approximation importance sampling model selection pharmacokinetics saquinavir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal S.L., Sheiner L.B. (1980) The NONMEM System. Am. Stat. 34:118–119CrossRefGoogle Scholar
  2. Sheiner L.B., Rosenberg B., Marathe V.V. (1977). Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokinet. Biopharm. 5:445–479PubMedCrossRefGoogle Scholar
  3. Davidian M., Giltinan D.M. (2003). Non linear models for repeated measurement data: an overview and update. J. Agric. Biol. Environ. Stat. 8:387–419CrossRefGoogle Scholar
  4. Ramos R.Q., Pantula S.G. (1995). Estimation of nonlinear random coefficient models. Statist. Probab. Lett. 24:49–56CrossRefGoogle Scholar
  5. Vonesh E.F. (1996) A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 83:447–452CrossRefGoogle Scholar
  6. Ko H., Davidian M. (2000). Correcting for measurement error in individual-level covariates in nonlinear mixed effect models. Biometrics 56:368–375PubMedCrossRefGoogle Scholar
  7. Dempster A.P., Laird N.M., Rubin D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 1:1–38Google Scholar
  8. Lindstrom M.J., Bates D.M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Am. Stat. Assoc. 83:1014–1022CrossRefGoogle Scholar
  9. Mentré F., Gomeni R. (1995). A two-step algorithm for estimation on non-linear mixed-effects with an evaluation in population pharmacokinetics. J. Biopharm. Stat. 5:141–158PubMedGoogle Scholar
  10. Wei G.C., Tanner M.Z. (1991). Applications of multiple imputation to the analysis of censored regression data. Biometrics 47:1297–1309PubMedCrossRefGoogle Scholar
  11. Walker G. (1996). An EM algorithm for non-linear random effects models. Biometrics 52:934–944CrossRefGoogle Scholar
  12. Wu L. (2002). A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with application to AIDS studies. J. Am. Statist. Assoc. 97:955–964CrossRefGoogle Scholar
  13. Wu L. (2004). Exact and approximate inferences for nonlinear mixed-effects models with missing covariates. J. Am. Statist. Assoc. 99: 700–709CrossRefGoogle Scholar
  14. Delyon B., Lavielle M., Moulines E. (1999). Convergence os a stochastic approximation version of the EM procedure. Ann. Stat. 27:94–128CrossRefGoogle Scholar
  15. Kuhn E., Lavielle M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statist. Data. Anal. 49:1020–1038CrossRefGoogle Scholar
  16. Trout H., Mentré F., Panhard X., Kodjo A., Escaut L., Pernet P., Gobert J.G., Vittecoq D., Knellwolf A.L., Caulin C., Bergmann J.F. (2004). Enhanced saquinavir exposure in HIV1-infected patients with diarrhea and/or wasting syndrome. Antimicrob. Agents Chemother. 48:538–545PubMedCrossRefGoogle Scholar
  17. P. Girard and F. Mentré. A comparison of estimation methods in nonlinear mixed effects models using a blind analysis. PAGE 14 (2005); Abstr 834 [www.page-meeting. org/?abstract=834].Google Scholar
  18. Louis T.A. (1982). Finding the observed information matrix when using EM algorithm. J. R. Stat. Soc. B. 44:226–233Google Scholar
  19. Kowalski K.G., Hutmacher M.M. (2001). Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test. J. Pharmacokinet. Pharmacodyn. 28:253–275PubMedCrossRefGoogle Scholar
  20. D. O. Stram and J. W. Lee. Variance components testing in the longitudinal mixed effects model. Biometrics 50(4):1171–1177 (1994). Erratum in: Biometrics 51(3):1196 (1995).Google Scholar
  21. Jonsson E.N., Karlsson M.O. (1998) Automated covariate model building within NONMEM. Pharm. Res. 15:1463–1468PubMedCrossRefGoogle Scholar
  22. Kass R.E., Raftery A.E. (1995). Bayes factors. J. Am. Stat. Assoc. 90:773–795CrossRefGoogle Scholar
  23. Verbeke G., Molenberghs G. (2004). Linear Mixed Effect Models for Longitudinal Data. New York, SpringerGoogle Scholar
  24. Burnham K.P. Anderson D.R. (2004). Multimodel Inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33:261–304CrossRefGoogle Scholar
  25. Ramos J.I. (1999). Linearized methods for ordinary differential equations. Appl. Math. Comput. 104:109–129CrossRefGoogle Scholar
  26. S. Donnet and A. Samson. Estimation of parameters in incomplete data models defined by dynamical systems. J. Stat. Plan. Infer. to appear (2007).Google Scholar
  27. S. Retout, E. Comets, A. Samson, and F. Mentré. Designs in nonlinear mixed effects models: application to HIV viral load decrease with evaluation, optimization and determination of the power of the test of a treatment effect. PAGE 14 (2005); Abstr 775 [.page-meeting.org/?abstract=775]Google Scholar
  28. Retout S., Mentré F. (2003). Optimization of individual and population designs using Splus. J. Pharmacokinet. Pharmacodyn. 30:417–443PubMedCrossRefGoogle Scholar
  29. Pillai G.C., Mentré F F., Steimer J.L. (2005). Non-linear mixed effects modeling – from methodology and software development to driving implementation in drug development science. J. Pharmacokinet. Pharmacodyn. 32:161–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity Paris 5; University Paris 11OrsayFrance
  2. 2.INSERM, U738; Université Paris 7, UFR de Médecine; AP-HP Hôpital BichatParisFrance

Personalised recommendations