Application of Corn Fibers from Harvest Residues in Biocomposite Films

Abstract

Agro-industrial residues are difficult to dispose of or reuse; however, it can be used to generate goods such as biodegradable packaging. The aim was to isolate and characterize fibers from corn stalks, husks, and cobs, and apply them in starch composite films (control, 5 g 100 g−1, 10 g 100 g−1, 15 g 100 g−1 and 20 g 100 g−1). The cellulose fibers were isolated by alkaline treatment and characterized by its morphology, crystallinity, and chemical structure, showing materials with different lengths and diameters, and intermediate crystallinity. The composite films were evaluated by morphological characteristics, water-solubility, water vapor permeability, chemical structure, mechanical properties, and sorption isotherms. Generally, fibers reinforcement decreased moisture adsorption. The tensile strength and Young's modulus increased adding straw fiber (5 g 100 g−1 and 10 g 100 g−1) and stalk and cob fibers (5 g 100 g−1). The use of cellulose fibers in films is important to expand and improve the current lack of biodegradable packaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and pinus radiata kraft pulp fibers. Microsc Microanal 17(4):563–571. https://doi.org/10.1017/S1431927611000444

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lomelí-Ramírez MG, Kestur SG, Manríquez-González R, Iwakiri S, De Muniz GB, Flores-Sahagun TS (2014) Bio-composites of cassava starch-green coconut fiber: Part II—structure and properties. Carbohydr Polym 102(1):576–583. https://doi.org/10.1016/j.carbpol.2013.11.020

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Xu J, Krietemeyer EF, Boddu VM, Liu SX, Liu WC (2018) Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohyd Polym 192(March):202–207. https://doi.org/10.1016/j.carbpol.2018.03.017

    CAS  Article  Google Scholar 

  4. 4.

    Candido RG, Gonçalves AR (2019) Evaluation of two different applications for cellulose isolated from sugarcane bagasse in a biorefinery concept. Ind Crops Products. https://doi.org/10.1016/j.indcrop.2019.111616

    Article  Google Scholar 

  5. 5.

    Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43(2):124–129. https://doi.org/10.1016/j.enzmictec.2007.11.006

    CAS  Article  Google Scholar 

  6. 6.

    Farah NH, Salmah H, Marliza M (2016) Effect of butyl methacrylate on properties of regenerated cellulose coconut shell biocomposite films. Procedia Chem 19:335–339. https://doi.org/10.1016/j.proche.2016.03.020

    CAS  Article  Google Scholar 

  7. 7.

    Martelli-Tosi M, Masson MM, Silva NC, Esposto BS, Barros TT, Assis OBG, Tapia-Blácido DR (2018) Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr Polym 198(May):61–68. https://doi.org/10.1016/j.carbpol.2018.06.053

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Homogenous and transparent nanocellulosic films from carrot. Ind Crops Products 118:53–64. https://doi.org/10.1016/j.indcrop.2018.02.076

    CAS  Article  Google Scholar 

  9. 9.

    de Oliveira JP, Bruni GP, Lima KO, El Halal SLM, da Rosa GS, Dias ARG, da Zavareze ER (2017) Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem 221:153–160. https://doi.org/10.1016/j.foodchem.2016.10.048

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Liu Y, Liu A, Ibrahim SA, Yang H, Huang W (2018) Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol 111:717–721. https://doi.org/10.1016/j.ijbiomac.2018.01.098

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kalaoǧlu ÖI, Ünlü CH, Galioǧlu Atici O (2016) Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites. Carbohydr Polym 147:37–44. https://doi.org/10.1016/j.carbpol.2016.03.073

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. https://doi.org/10.1016/j.indcrop.2012.10.014

    CAS  Article  Google Scholar 

  13. 13.

    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. https://doi.org/10.1002/anie.200460587

    CAS  Article  Google Scholar 

  14. 14.

    Milanez DH, Chanchetti LF, Amaral RM, Faria LIL, Ishikawa TT, Gregolin JAR (2014) Prospecção tecnológica dos processos de obtenção da nanocelulose a partir de indicadores tecnológicos. Anais Do 69° Congresso Anual Da ABM, 1–12.

  15. 15.

    Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohyd Polym 163:301–316. https://doi.org/10.1016/j.carbpol.2016.12.050

    CAS  Article  Google Scholar 

  16. 16.

    Han J (2018) Food packaging : a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877. https://doi.org/10.1111/1541-4337.12343

    Article  PubMed  Google Scholar 

  17. 17.

    Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    CAS  Article  Google Scholar 

  18. 18.

    Bodirlau R, Teaca CA, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Composite B 44(1):575–583. https://doi.org/10.1016/j.compositesb.2012.02.039

    CAS  Article  Google Scholar 

  19. 19.

    Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696. https://doi.org/10.1021/ma971532b

    CAS  Article  Google Scholar 

  20. 20.

    El Halal SLM, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreño NLV et al (2015) Films based on oxidized starch and cellulose from barley. Carbohydr Polym 133:644–653. https://doi.org/10.1016/j.carbpol.2015.07.024

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Müller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids 23(5):1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002

    CAS  Article  Google Scholar 

  22. 22.

    Pelissari FM, Andrade-Mahecha MM, do Sobral PJA, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci 505:154–167. https://doi.org/10.1016/j.jcis.2017.05.106

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B 52(12):791–806. https://doi.org/10.1002/polb.23490

    CAS  Article  Google Scholar 

  25. 25.

    Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev 44(3):231–274. https://doi.org/10.1081/MC-200029326

    CAS  Article  Google Scholar 

  26. 26.

    Mali S, Grossmann MVE, Yamashita F (2010) Filmes de amido: Produção, propriedades e potencial de utilização. Sem Ciencias Agrarias 31(1):137–156. https://doi.org/10.5433/1679-0359.2010v31n1p137

    CAS  Article  Google Scholar 

  27. 27.

    Homez AK, Daza LD, Solanilla JF, Váquiro HA (2018) Effect of temperature, starch and plasticizer concentrations on color parameters of ulluco (Ullucus tuberosus Caldas) edible films. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/437/1/012003

    Article  Google Scholar 

  28. 28.

    Sapuan S, Kim H-J, Abral H, Asrofi M, Putra YK (2017) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. Int J Biol Macromol 108:167–176. https://doi.org/10.1016/j.ijbiomac.2017.11.165

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Debiagi F, Mali S, Grossmann MVE, Yamashita F (2010) Efeito de fibras vegetais nas propriedades de compósitos biodegradáveis de amido de mandioca produzidos via extrusão. Cienc Agrotecnol 34(6):1522–1529. https://doi.org/10.1590/S1413-70542010000600024

    Article  Google Scholar 

  30. 30.

    Scheibe ANAS, Moraes JODE, Laurindo JB (2014) Production and characterization of bags from biocomposite films of starch-vegetal fibers prepared by tape casting. J Food Process Eng 37(5):482–492. https://doi.org/10.1111/jfpe.12105

    CAS  Article  Google Scholar 

  31. 31.

    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  32. 32.

    ASTM (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM Standards 12. https://doi.org/10.1520/D0882-12.2

  33. 33.

    Gontard N, Guilbert S, Cuq J-L (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57(1):190–195. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x

    CAS  Article  Google Scholar 

  34. 34.

    ASTM (2016) Standard Test Methods for Water Vapor Transmission of Materials. ASTM Annual Book of ASTM Standarts, i(July 2000), 907–914. https://doi.org/https://doi.org/10.1520/E0096

  35. 35.

    Zhang Y, Han JH (2008) Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film. J Food Sci. https://doi.org/10.1111/j.1750-3841.2008.00867.x

    Article  PubMed  Google Scholar 

  36. 36.

    Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Biores Technol 99(6):1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    CAS  Article  Google Scholar 

  37. 37.

    Chen YW, Lee HV, Juan JC, Phang SM (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219. https://doi.org/10.1016/j.carbpol.2016.06.083

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68. https://doi.org/10.1016/j.carbpol.2014.12.064

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

    CAS  Article  Google Scholar 

  40. 40.

    Kos T, Anžlovar A, Kunaver M, Huskić M, Žagar E (2014) Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose 21(4):2579–2585. https://doi.org/10.1007/s10570-014-0315-2

    CAS  Article  Google Scholar 

  41. 41.

    Rahimi Kord Sofla M, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci. https://doi.org/10.1088/2043-6262/7/3/035004

    Article  Google Scholar 

  42. 42.

    Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Sun, R.-C., & Tomkinson, J. (2000). Essential Guides for Isolation/Purification of Polysaccharides. In Ian D. Wilson (Ed.), Encyclopedia of Separation Science (pp. 4568–4574). https://doi.org/https://doi.org/10.1016/b0-12-226770-2/07271-9

  44. 44.

    Thakur VK (2015) Lignocellulosic polymer composites: processing, characterization, and properties, 1st edn. Wiley, Hoboken

    Google Scholar 

  45. 45.

    Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115(August):714–719. https://doi.org/10.1016/j.fuel.2013.07.094

    CAS  Article  Google Scholar 

  46. 46.

    Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Ind Crops Prod 76:355–363. https://doi.org/10.1016/j.indcrop.2015.07.006

    CAS  Article  Google Scholar 

  47. 47.

    Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034

    CAS  Article  Google Scholar 

  48. 48.

    El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Testing 21(6):665–674. https://doi.org/10.1016/S0142-9418(01)00142-8

    CAS  Article  Google Scholar 

  49. 49.

    Pukánszky B, Mudra I, Staniek P (1997) Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Add Tech 3(1):53–57. https://doi.org/10.1002/vnl.10165

    Article  Google Scholar 

  50. 50.

    Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45(3):253–267. https://doi.org/10.1016/S0144-8617(00)00260-5

    CAS  Article  Google Scholar 

  51. 51.

    Luchese CL, Benelli P, Spada JC, Tessaro IC (2018) Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. J Appl Polym Sci 135(33):1–11. https://doi.org/10.1002/app.46564

    CAS  Article  Google Scholar 

  52. 52.

    Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626. https://doi.org/10.1016/j.indcrop.2017.09.020

    CAS  Article  Google Scholar 

  53. 53.

    Joseph S, Sreekala MS, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62(14):1857–1868. https://doi.org/10.1016/S0266-3538(02)00098-2

    CAS  Article  Google Scholar 

  54. 54.

    Razera IAT, Frollini E (2004) Composites based on jute fibers and phenolic matrices: properties of fibers and composites. J Appl Polym Sci 91(2):1077–1085. https://doi.org/10.1002/app.13224

    CAS  Article  Google Scholar 

  55. 55.

    El Halal SLM, Colussi R, Biduski B, do Evangelho JA, Bruni GP, Antunes MD et al (2017) Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. J Sci Food Agric 97(2):411–419. https://doi.org/10.1002/jsfa.7773

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ma X, Yu J, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. 62:19–24. https://doi.org/https://doi.org/10.1016/j.carbpol.2005.07.015

  57. 57.

    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262. https://doi.org/10.1007/s10570-013-0007-3

    CAS  Article  Google Scholar 

  58. 58.

    Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2011) Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT Food Sci Technol 44(2):535–542. https://doi.org/10.1016/j.lwt.2010.07.006

    CAS  Article  Google Scholar 

  59. 59.

    Kunanopparat T, Menut P, Morel MH, Guilbert S (2008) Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect. Composite A 39(5):777–785. https://doi.org/10.1016/j.compositesa.2008.02.001

    CAS  Article  Google Scholar 

  60. 60.

    Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fibers Polym 18(2):272–277. https://doi.org/10.1007/s12221-017-6548-6

    CAS  Article  Google Scholar 

  61. 61.

    Curvelo AAS, De Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr Polym 45(2):183–188. https://doi.org/10.1016/S0144-8617(00)00314-3

    CAS  Article  Google Scholar 

  62. 62.

    Avérous L, Fringant C, Moro L (2001) Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 42(15):6565–6572. https://doi.org/10.1016/S0032-3861(01)00125-2

    Article  Google Scholar 

  63. 63.

    Ge Y, Li Z, Kong Y, Song Q, Wang K (2014) Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms. J Ind Eng Chem 20(6):4429–4436. https://doi.org/10.1016/j.jiec.2014.02.011

    CAS  Article  Google Scholar 

  64. 64.

    Larotonda FDS, Matsui KN, Sobral PJA, Laurindo JB (2005) Hygroscopicity and water vapor permeability of Kraft paper impregnated with starch acetate. J Food Eng 71(4):394–402. https://doi.org/10.1016/j.jfoodeng.2004.11.002

    Article  Google Scholar 

  65. 65.

    Müller CMO, Yamashita F, Laurindo JB (2008) Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohyd Polym 72(1):82–87. https://doi.org/10.1016/j.carbpol.2007.07.026

    CAS  Article  Google Scholar 

  66. 66.

    Bilbao-Sáinz C, Avena-Bustillos RJ, Wood DF, Williams TG, Mchugh TH (2010) Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J Agric Food Chem 58(6):3753–3760. https://doi.org/10.1021/jf9033128

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells : processing and characterization of starch—cellulose microfibril composites. Polymer 76(14):2080–2092

    CAS  Google Scholar 

  68. 68.

    Almeida ACS, Franco EAN, Peixoto FM, Pessanha KLF, Melo NR (2015) Aplicação de nanitecnologia em embalagens de alimentos. Polimeros 25:89–97

    Article  Google Scholar 

  69. 69.

    Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732. https://doi.org/10.1021/ja01864a025

    CAS  Article  Google Scholar 

  70. 70.

    Merci A, Urbano A, Victória M, Grossmann E, Tischer CA (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. FRIN 73:38–43. https://doi.org/10.1016/j.foodres.2015.03.020

    CAS  Article  Google Scholar 

  71. 71.

    Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49(1):585–609. https://doi.org/10.1146/annurev.arplant.49.1.585

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    RAHMAN., M. S. (2007) Water activity and food preservation, in handbook of food preservation, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This research was funded by Universidade Federal da Fronteira Sul (UFFS) (Edital nº 459/GR/UFFS/2019, PES-2019-0547) and by the National Council for Scientific and Technological Development (CNPq) (Chamada MCTIC/CNPq Nº 28/2018 – Universal, 432181/2018-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vânia Zanella Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lenhani, G.C., dos Santos, D.F., Koester, D.L. et al. Application of Corn Fibers from Harvest Residues in Biocomposite Films. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02078-6

Download citation

Keywords

  • Starch composite films
  • Stalks
  • Husks
  • Cobs
  • Lignocellulosic material
  • Zea mays