Synthesis of Gum Acacia Capped Polyaniline-Based Nanocomposite Hydrogel for the Removal of Methylene Blue Dye

Abstract

In this research work, a novel gum acacia capped polyaniline-based nanocomposite hydrogel (GPA NCHs) was developed and evaluated for the adsorptive removal of cationic methylene blue dye (MB) from aqueous solutions. Firstly, Gum acacia (GA) capped Polyaniline (PANI) dispersion was synthesized by using dispersion polymerization. Then, a water-swellable hydrogel network consisting of GA-PANI and acrylamide (AM) was obtained by using N,N′ -methylene-bisacrylamide (MBA) as a cross-linker, and ammonium persulphate/N,N,N,N′-tetramethylethylenediamine (APS/TMEDA) as an initiating system. The developed materials were characterized by UV–visible, FTIR, XRD, SEM–EDX and TEM techniques. The microscopy studies revealed that GA-PANI nanoparticles have a granular morphological surface with an average size of ~ 40–100 nm. Removal of MB dye from aqueous system was performed by adsorption studies in batch equilibrium mode with different dosage of GA-PANI, MB concentration, pH and temperatures. The adsorption data revealed that the absorption capacity of GPA NCHs highly depends on the dosage of GA-PANI, pH and concentration of the MB dye. The maximum percentage of MB removal onto GPA 1.0 NCHs was found to be 89% at pH 10 with a dye concentration of 10 mg L−1. The equilibrium adsorption data were also analyzed by different models to understand the adsorption process. The results revealed that the adsorption process followed the pseudo-second-order kinetics and it fit well in Langmuir and Freundlich adsorption isotherms with a maximum adsorption capacity of 35.41 mg g−1. These studies demonstrate that the GPA NCHs could be a promising adsorbent material for the removal of MB dye from contaminated aqueous systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM (2020) Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int J Biol Macromol 154:307–318. https://doi.org/10.1016/j.ijbiomac.2020.03.122

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ben Ali M, Wang F, Boukherroub R et al (2019) Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions. J Colloid Interface Sci 553:688–698. https://doi.org/10.1016/j.jcis.2019.06.065

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https://doi.org/10.1016/J.ENVINT.2004.02.001

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Allegre C, Maisseu M, Charbit F, Moulin P (2004) Coagulation-flocculation-decantation of dye house effluents: concentrated effluents. J Hazard Mater 116:57–64. https://doi.org/10.1016/j.jhazmat.2004.07.005

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Gong R, Ye J, Dai W et al (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res 52:14297–14303. https://doi.org/10.1021/ie402138w

    CAS  Article  Google Scholar 

  6. 6.

    Janaki V, Oh BT, Shanthi K et al (2012) Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162:974–980. https://doi.org/10.1016/j.synthmet.2012.04.015

    CAS  Article  Google Scholar 

  7. 7.

    Maruthapandi M, Kumar VB, Luong JHT, Gedanken A (2018) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption on polyaniline and polypyrrole macro-nanoparticles synthesized by C-dot-initiated polymerization. ACS Omega 3:7196–7203. https://doi.org/10.1021/acsomega.8b00478

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Jayaramudu T, Varaprasad K, Kim HCHCHC et al (2017) Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties. Carbohydr Polym 171:183–192. https://doi.org/10.1016/j.carbpol.2017.04.077

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Varaprasad K, Nunez D, Yallapu MM et al (2018) Nano-hydroxyapatite polymeric hydrogels for dye removal. RSC Adv 8:18118–18127. https://doi.org/10.1039/C8RA01887A

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ayad MM, Abu El-Nasr A, Stejskal J (2012) Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. J Ind Eng Chem 18:1964–1969. https://doi.org/10.1016/j.jiec.2012.05.012

    CAS  Article  Google Scholar 

  11. 11.

    Wang N, Chen J, Wang J et al (2019) Removal of methylene blue by polyaniline/TiO2 hydrate: adsorption kinetic, isotherm and mechanism studies. Powder Technol 347:93–102. https://doi.org/10.1016/j.powtec.2019.02.049

    CAS  Article  Google Scholar 

  12. 12.

    Minisy IM, Salahuddin NA, Ayad MM (2019) Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J Appl Polym Sci 136:1–12. https://doi.org/10.1002/app.47056

    CAS  Article  Google Scholar 

  13. 13.

    Amer WA, Omran MM, Ayad MM (2019) Acid-free synthesis of polyaniline nanotubes for dual removal of organic dyes from aqueous solutions. Colloids Surf A Physicochem Eng Asp 562:203–212. https://doi.org/10.1016/j.colsurfa.2018.10.081

    CAS  Article  Google Scholar 

  14. 14.

    Ulutürk C, Alemdar N (2018) Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel. Carbohydr Polym 193:307–315. https://doi.org/10.1016/j.carbpol.2018.03.099

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758. https://doi.org/10.1016/j.progpolymsci.2008.02.002

    CAS  Article  Google Scholar 

  16. 16.

    Yagudaeva E, Zybin D, Vikhrov A et al (2018) Sorption of nucleic acids and proteins on polyaniline and polyaramide nano-coatings as studied by spectral-correlation interferometry in a real time mode. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2017.12.025

    Article  PubMed  Google Scholar 

  17. 17.

    Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces 9:2914–2923. https://doi.org/10.1021/acsami.6b11682

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Beau B, Travers JP, Banka E (1999) NMR evidence for heterogeneous disorder and quasi-1D metallic state in polyaniline CSA. Synth Met 101:772–775. https://doi.org/10.1016/S0379-6779(98)00357-9

    CAS  Article  Google Scholar 

  19. 19.

    Han YG, Kusunose T, Sekino T (2009) One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles. Synth Met 159:123–131. https://doi.org/10.1016/j.synthmet.2008.08.011

    CAS  Article  Google Scholar 

  20. 20.

    John A, Palaniappan S, Djurado D, Pron A (2008) One-step preparation of solution processable conducting polyaniline by inverted emulsion polymerization using didecyl ester of 4-sulfophthalic acid as multifunctional dopant. J Polym Sci, Part A: Polym Chem 46:1051–1057

    CAS  Article  Google Scholar 

  21. 21.

    Banerjee P, Bhattacharyya SN, Mandal BM (1995) Poly(vinyl methyl ether) stabilized colloidal polyaniline dispersions. Langmuir 11:2414–2418. https://doi.org/10.1021/la00007a017

    CAS  Article  Google Scholar 

  22. 22.

    Chattopadhyay D, Banerjee S, Chakravorty D, Mandal BM (1998) Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom. Langmuir 14:1544–1547. https://doi.org/10.1021/la970936u

    CAS  Article  Google Scholar 

  23. 23.

    Chattopadhyay D, Chakraborty M, Mandal BM (2001) Dispersion polymerization of aniline using hydroxypropylcellulose as stabilizer: role of rate of polymerization. Polym Int 50:538–544. https://doi.org/10.1002/pi.662

    CAS  Article  Google Scholar 

  24. 24.

    Amarnath CA, Palaniappan S, Rannou P, Pron A (2008) Acacia stabilized polyaniline dispersions: preparation, properties and blending with poly(vinyl alcohol). Thin Solid Films 516:2928–2933. https://doi.org/10.1016/j.tsf.2007.06.021

    CAS  Article  Google Scholar 

  25. 25.

    Aderibigbe BAA, Varaprasad K, Sadiku ERR et al (2015) Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. Int J Biol Macromol 73:115–123

    CAS  Article  Google Scholar 

  26. 26.

    Raghavendra GM, Jayaramudu T, Varaprasad K et al (2013) Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym 93:553–560. https://doi.org/10.1016/j.carbpol.2012.12.035

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Renuga Devi P, Senthil Kumar C, Selvamani P et al (2015) Synthesis and characterization of Arabic gum capped gold nanoparticles for tumor-targeted drug delivery. Mater Lett 139:241–244. https://doi.org/10.1016/j.matlet.2014.10.010

    CAS  Article  Google Scholar 

  28. 28.

    Momeni S, Sedaghati F (2018) CuO/Cu2O nanoparticles: a simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchem J 143:64–71. https://doi.org/10.1016/j.microc.2018.07.035

    CAS  Article  Google Scholar 

  29. 29.

    Tiwari A, Singh V (2008) Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydr Polym 74:427–434. https://doi.org/10.1016/j.carbpol.2008.03.015

    CAS  Article  Google Scholar 

  30. 30.

    Hosseini J, Zare EN, Ajloo D (2019) Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(aniline-co-pyrrole) nanospheres. J Mol Liq 296:111789. https://doi.org/10.1016/j.molliq.2019.111789

    CAS  Article  Google Scholar 

  31. 31.

    Sharma R, Kaith BS, Kalia S et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45. https://doi.org/10.1016/j.jenvman.2015.07.044

    CAS  Article  Google Scholar 

  32. 32.

    Sun Y, MacDiarmid AG, Epstein AJ (1990) Polyaniline: synthesis and characterization of pernigraniline base. J Chem Soc, Chem Commun. https://doi.org/10.1039/C39900000529

    Article  Google Scholar 

  33. 33.

    Cao Y (1990) Spectroscopic studies of acceptor and donor doping of polyaniline in the emeraldine base and pernigraniline forms. Synth Met 35:319–332. https://doi.org/10.1016/0379-6779(90)90216-8

    CAS  Article  Google Scholar 

  34. 34.

    Tang Q, Wu J, Sun H et al (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219. https://doi.org/10.1016/j.carbpol.2008.02.008

    CAS  Article  Google Scholar 

  35. 35.

    Xu L, Che L, Zheng J et al (2014) Synthesis and thermal degradation property study of N-vinylpyrrolidone and acrylamide copolymer. RSC Adv 4:33269–33278. https://doi.org/10.1039/C4RA05720A

    CAS  Article  Google Scholar 

  36. 36.

    Pal S, Nasim T, Patra A et al (2010) Microwave assisted synthesis of polyacrylamide grafted dextrin (Dxt-g-PAM): development and application of a novel polymeric flocculant. Int J Biol Macromol 47:623–631. https://doi.org/10.1016/j.ijbiomac.2010.08.009

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Razalli RL, Abdi MM, Tahir PM et al (2017) Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv 7:25191–25198. https://doi.org/10.1039/C7RA03379F

    CAS  Article  Google Scholar 

  38. 38.

    Almuslet NA, Hassan EA, Al-Sherbini ASAEM, Muhgoub MGA (2012) Diode laser (532 nm) induced grafting of polyacrylamide onto Gum Arabic. J Phys Sci 23:43–53

    Google Scholar 

  39. 39.

    Niu F, Kou M, Fan J et al (2018) Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates. Food Chem 260:1–6. https://doi.org/10.1016/j.foodchem.2018.03.141

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Paulraj R, Shankar P, Mani GK et al (2017) Fabrication of PANI–ZnO nanocomposite thin film for room temperature methanol sensor. J Mater Sci: Mater Electron 28:10799–10805. https://doi.org/10.1007/s10854-017-6857-y

    CAS  Article  Google Scholar 

  41. 41.

    Mahato N, Parveen N, Cho MH (2015) Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Mater Lett 161:372–374. https://doi.org/10.1016/j.matlet.2015.08.138

    CAS  Article  Google Scholar 

  42. 42.

    Kong P, Liu P, Ge Z et al (2019) Conjugated HCl-doped polyaniline for photocatalytic oxidative coupling of amines under visible light. Catal Sci Technol 9:753–761. https://doi.org/10.1039/C8CY02280A

    CAS  Article  Google Scholar 

  43. 43.

    Wang A, Wang W (2013) Gum-g-copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, pp 149–203

    Google Scholar 

  44. 44.

    Mazzeu MAC, Faria LK, de Cardoso AM et al (2017) Structural and morphological characteristics of polyaniline synthesized in pilot scale. J Aerosp Technol Manag 9:39–47. https://doi.org/10.5028/jatm.v9i1.726

    CAS  Article  Google Scholar 

  45. 45.

    Milojević-Rakić M, Janošević A, Krstić J et al (2013) Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. Microporous Mesoporous Mater 180:141–155. https://doi.org/10.1016/j.micromeso.2013.06.025

    CAS  Article  Google Scholar 

  46. 46.

    Jayaramudu T, Ko H-U, Kim HC et al (2019) Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: swelling kinetics, temperature, and pH effects. Materials 12:2080. https://doi.org/10.3390/ma12132080

    CAS  Article  PubMed Central  Google Scholar 

  47. 47.

    Jayaramudu T, Raghavendra GM, Varaprasad K et al (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92:2193–2200. https://doi.org/10.1016/j.carbpol.2012.12.006

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte. J Agric Food Chem 65:565–574. https://doi.org/10.1021/acs.jafc.6b04899

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Mittal H, Ray SS (2016) A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol 88:66–80. https://doi.org/10.1016/j.ijbiomac.2016.03.032

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mittal H, Babu R, Alhassan SM (2020) Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution. Int J Biol Macromol 143:413–423. https://doi.org/10.1016/j.ijbiomac.2019.11.008

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Doğan M, Abak H, Alkan M (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater 164:172–181. https://doi.org/10.1016/J.JHAZMAT.2008.07.155

    Article  PubMed  Google Scholar 

  52. 52.

    Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. https://doi.org/10.1016/J.JHAZMAT.2005.12.043

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    CAS  Article  Google Scholar 

  54. 54.

    Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98:14–21. https://doi.org/10.1016/J.BIORTECH.2005.12.008

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yi X, Sun F, Han Z et al (2018) Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol Environ Saf 158:309–318. https://doi.org/10.1016/j.ecoenv.2018.04.039

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Yao Y, Bing H, Feifei X, Xiaofeng C (2011) Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem Eng J 170:82–89. https://doi.org/10.1016/j.cej.2011.03.031

    CAS  Article  Google Scholar 

  57. 57.

    Hassan SSM, Awwad NS, Aboterika AHA (2009) Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement. J Hazard Mater 162:994–999. https://doi.org/10.1016/J.JHAZMAT.2008.05.138

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Nethaji S, Sivasamy A (2017) Graphene oxide coated with porous iron oxide ribbons for 2, 4-dichlorophenoxyacetic acid (2,4-D) removal. Ecotoxicol Environ Saf 138:292–297. https://doi.org/10.1016/J.ECOENV.2017.01.001

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717. https://doi.org/10.1016/J.IJBIOMAC.2014.09.023

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Algothmi WM, Bandaru NM, Yu Y et al (2013) Alginate–graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38. https://doi.org/10.1016/J.JCIS.2013.01.051

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/J.CEJ.2009.09.013

    CAS  Article  Google Scholar 

  62. 62.

    Kim Y, Kim C, Choi I et al (2003) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931. https://doi.org/10.1021/es0346431

    CAS  Article  Google Scholar 

  63. 63.

    Awual MR, Hasan MM, Naushad M et al (2015) Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sens Actuators B Chem 209:790–797. https://doi.org/10.1016/J.SNB.2014.12.053

    CAS  Article  Google Scholar 

  64. 64.

    Zheng S, Li X, Zhang X et al (2017) Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin. Chemosphere 182:325–331. https://doi.org/10.1016/J.CHEMOSPHERE.2017.05.042

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Ballav N, Maity A, Mishra SB (2012) High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chem Eng J 198–199:536–546. https://doi.org/10.1016/J.CEJ.2012.05.110

    Article  Google Scholar 

  66. 66.

    Bilal S, Fahim M, Firdous I, Ali Shah A-H (2018) Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder. Appl Surf Sci 435:91–101. https://doi.org/10.1016/J.APSUSC.2017.11.030

    CAS  Article  Google Scholar 

  67. 67.

    Ayad M, El-Hefnawy G, Zaghlol S (2013) Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem Eng J 217:460–465. https://doi.org/10.1016/j.cej.2012.11.099

    CAS  Article  Google Scholar 

  68. 68.

    Ayad M, Abu El-Nasr A (2010) Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J Phys Chem C 114:14377–14383. https://doi.org/10.1021/jp103780w

    CAS  Article  Google Scholar 

  69. 69.

    Yan B, Chen ZZ, Cai L et al (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47. https://doi.org/10.1016/j.apsusc.2015.08.024

    CAS  Article  Google Scholar 

  70. 70.

    Ayad M, Zaghlol S (2012) Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption for organic dye. Chem Eng J 204–206:79–86. https://doi.org/10.1016/J.CEJ.2012.07.102

    Article  Google Scholar 

Download references

Acknowledgements

The author, TJ acknowledges ANID/CONICYT-Chile for the FONDECYT Postdoctoral Fellowship-2017 (#3170272) and Universidad de Talca for the support. Authors acknowledge PIEI-QUIM-BIO, and Direccion de Investigacion, Universidad de Talca for International Postdoctoral Fellowship 2020, Proyecto de Investigacion enlace FONDECYT (#300061) and Proyecto fondo para equipamiento científico de nivel intermedio 2018. PR wishes to acknowledge Fondecyt Iniciacion No 11190727, which is supported by ANID and VRIP, Universidad Católica del Maule.

Author information

Affiliations

Authors

Contributions

TJ: Writing—original draft, Writing—review & editing, Investigation. RDP: Investigation, AA-F: Investigation, Diana Abril-Milan: Investigation, JA: Conceptualization, Resources, Supervision, Writing- review & editing.

Corresponding author

Correspondence to John Amalraj.

Ethics declarations

Conflict of interest

There are no conflicts of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayaramudu, T., Pyarasani, R.D., Akbari-Fakhrabadi, A. et al. Synthesis of Gum Acacia Capped Polyaniline-Based Nanocomposite Hydrogel for the Removal of Methylene Blue Dye. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02066-w

Download citation

Keywords

  • Nanocomposite hydrogels
  • Polyaniline
  • Methylene blue
  • Adsorption