Skip to main content
Log in

Preparation and Characterization of Polyamide Thin Film Composite Nanofiltration Membrane Based on Polyurethane Nanofibrous Support

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyurethane nanofibers recognized to perform as a sub-layer were employed herein as a medial-layer of high porosity in the fabrication of a novel class of thin-film nanofiltration membranes. In line with the primary aim of high throughput production of PU electrospun nanofibrous membranes (ENMs) with different fiber sizes and proper morphologies, the needle-free electrospinning technique was employed. An interfacial polymerization procedure was also utilized to conveniently coat a polyamide (PA) thin film on the polyurethane ENMs. The effects of the nanofibrous interconnecting network, fiber size, pore size, and morphology on the NF performance were investigated. The nanofiltration performance including the separation of various salts, water flux, and the MWCO test were performed. The results implied that the fiber size decrement, nanofibers interconnection increment, as well as nanofibrous membrane pore size decrement, and the nanofibrous layer increment (with different fiber size) would lead the interfacial polymerization to perfection and obtaining a uniform PA thin layer. The salts rejection and water flux of Na2SO4, MgSO4, MgCl2 and NaCl were (~ 99 ± 0.5 %, 37 ± 2.7 L/m2h), (~ 98 ± 1 %, 40 ± 1.5 L/m2h), (~ 95 ± 2 %, 33 ± 2 L/m2h) and (~ 52 ± 1 %, 30 ± 3 L/m2h), respectively. In the final analysis, a comparison of filtration performance between PU nanofibrous NF membranes with other well-known nanofibrous NF membranes was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. World Sci. https://doi.org/10.1038/nature06599

    Article  Google Scholar 

  2. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. https://doi.org/10.1126/science.1128845

    Article  CAS  PubMed  Google Scholar 

  3. Ciardelli G, Corsi L, Marcucci M (2001) Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl 31:189–197. https://doi.org/10.1016/S0921-3449(00)00079-3

    Article  Google Scholar 

  4. Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J Membr Sci 193:239–248. https://doi.org/10.1016/S0376-7388(01)00517-8

    Article  Google Scholar 

  5. Mondal S, Wickramasinghe SR (2008) Produced water treatment by nanofiltration and reverse osmosis membranes. J Membr Sci 322:162–170. https://doi.org/10.1016/j.memsci.2008.05.039

    Article  CAS  Google Scholar 

  6. Li Y, Su Y, Dong Y, Zhao X, Jiang Z, Zhang R, Zhao J (2014) Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination 333:59–65. https://doi.org/10.1016/j.desal.2013.11.035

    Article  CAS  Google Scholar 

  7. Jeong BH, Hoek EM, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7. https://doi.org/10.1016/j.memsci.2007.02.025

    Article  CAS  Google Scholar 

  8. Raaijmakers MJ, Benes NE (2016) Current trends in interfacial polymerization chemistry. Prog Polym Sci 63:86–142. https://doi.org/10.1016/j.progpolymsci.2016.06.004

    Article  CAS  Google Scholar 

  9. Lay WC, Zhang J, Tang C, Wang R, Liu Y, Fane AG (2012) Factors affecting flux performance of forward osmosis systems. J Membr Sci 394:151–168. https://doi.org/10.1016/j.memsci.2011.12.035

    Article  CAS  Google Scholar 

  10. Tang Z, Qiu C, McCutcheon JR, Yoon K, Ma H, Fang D, Lee E, Kopp C, Hsiao BS, Chu B (2009) Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J Polym Sci Part B: Polym Phys 47:2288–2300. https://doi.org/10.1002/polb.21831

    Article  CAS  Google Scholar 

  11. Wang X, Yeh TM, Wang Z, Yang R, Wang R, Ma H, Hsiao BS, Chu B (2014) Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold. Polymer 55:1358–1366. https://doi.org/10.1016/j.polymer.2013.12.007

    Article  CAS  Google Scholar 

  12. Xu GR, Liu XY, Xu JM, Li L, Su HC, Zhao HL, Feng HJ (2018) High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate. Appl Surf Sci 434:573–581. https://doi.org/10.1016/j.apsusc.2017.10.188

    Article  CAS  Google Scholar 

  13. Wang X, Ma H, Chu B, Hsiao BS (2017) Thin-film nanofibrous composite reverse osmosis membranes for desalination. Desalination 420:91–98. https://doi.org/10.1016/j.desal.2017.06.029

    Article  CAS  Google Scholar 

  14. Ma H, Burger C, Hsiao BS, Chu B (2012) Highly permeable polymer membranes containing directed channels for water purification. ACS Publ 1:723–726. https://doi.org/10.1021/mz300163h

    Article  CAS  Google Scholar 

  15. Liao Y, Loh CH, Tian M, Wang R, Fane AG (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci 77:69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003

    Article  CAS  Google Scholar 

  16. Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302:1600353. https://doi.org/10.1002/mame.201600353

    Article  CAS  Google Scholar 

  17. Walser J, Ferguson SJ (2016) Oriented nanofibrous membranes for tissue engineering applications: electrospinning with secondary field control. J Mech Behav Biomed Mater 58:188–198. https://doi.org/10.1016/j.jmbbm.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  18. Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011) Electrospun nanofibers for enhancing structural performance of composite materials. Polym Adv Technol 22:339–349. https://doi.org/10.1002/pat.1837

    Article  CAS  Google Scholar 

  19. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  20. Bae J, Baek I, Choi H (2016) Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance. Water Res 105:406–412. https://doi.org/10.1016/j.watres.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  21. Moslehi M, Mahdavi H (2019) Controlled pore size nanofibrous microfiltration membrane via multi-step interfacial polymerization: preparation and characterization. Sep Purif Technol 223:96–106. https://doi.org/10.1016/j.seppur.2019.04.041

    Article  CAS  Google Scholar 

  22. Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56:5724–5733. https://doi.org/10.1021/acs.iecr.7b00631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahdavi H, Moslehi M (2016) A new thin film composite nanofiltration membrane based on pet nanofiber support and polyamide top layer: preparation and characterization. J Polym Sci 23:257. https://doi.org/10.1007/s10965-016-1157-4

    Article  CAS  Google Scholar 

  24. Erdem R, Usta I, Akalin M, Atak O, Yuksek M, Pars A (2015) The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Appl Surf Sci 334:227–230. https://doi.org/10.1016/j.apsusc.2014.10.123

    Article  CAS  Google Scholar 

  25. Gorji M, Jeddi AA, Gharehaghaji A (2012) Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci 125:4135–4141. https://doi.org/10.1002/app.36611

    Article  CAS  Google Scholar 

  26. Li M, Wang D, Xiao R, Sun G, Zhao Q, Li H (2013) A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep Purif Technol 116:199–205. https://doi.org/10.1016/j.seppur.2013.05.046

    Article  CAS  Google Scholar 

  27. American Society for Testing and Materials. Committee D-19 on Water (2003) Standard test methods for pore size characteristics of membrane filters by bubble point and mean flow pore test. ASTM, West Conshohocken

    Google Scholar 

  28. Victor NJ, Borges CP, Ferraz HC (2016) Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Sep Purif Technol 171:238–247. https://doi.org/10.1016/j.seppur.2016.07.042

    Article  CAS  Google Scholar 

  29. Pontalier PY, Ismail A, Ghoul M (1997) Mechanisms for the selective rejection of solutes in nanofiltration membranes. Sep Purif Technol 12:175–181. https://doi.org/10.1016/S1383-5866(97)00047-6

    Article  CAS  Google Scholar 

  30. Kaur S, Sundarrajan S, Rana D, Matsuura T, Ramakrishna S (2012) Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J Membr Sci 392:101–111. https://doi.org/10.1016/j.memsci.2011.12.005

    Article  CAS  Google Scholar 

  31. Lin J, Ladisch M, Patterson J, Noller C (1987) Determining pore size distribution in wet cellulose by measuring solute exclusion using a differential refractometer. Biotechnol Bioeng 29:976–981. https://doi.org/10.1002/bit.260290809

    Article  CAS  PubMed  Google Scholar 

  32. Kaur S. Sundarrajan S, Gopal R, Ramakrishna S (2012) Formation and characterization of polyamide composite electrospun nanofibrous membranes for salt separation. J Appl Polym Sci 124:205–215. https://doi.org/10.1002/app.36375

    Article  CAS  Google Scholar 

  33. Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S (2011) Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination 279:201–209. https://doi.org/10.1016/j.desal.2011.06.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moslehi, M., Mahdavi, H. & Ghaffari, A. Preparation and Characterization of Polyamide Thin Film Composite Nanofiltration Membrane Based on Polyurethane Nanofibrous Support. J Polym Environ 29, 2463–2477 (2021). https://doi.org/10.1007/s10924-021-02060-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02060-2

Keywords

Navigation