Green Synthesis of Silver Nanoparticles Using Exopolysaccharides Produced by Bacillus anthracis PFAB2 and Its Biocidal Property


Nowadays when control of environmental toxicity is a matter of concern, the focus of the researchers is to find an eco-friendly process. Considering the hazards associated with chemical synthesis of nanoparticles, green synthesis approaches have gained considerable attention for their sustainable nature in nanomedicine and nanobiotechnology. Here, exopolysaccharide (EPS) synthesized by a geothermal spring origin B. anthracis PFAB2 is used for green synthesis of silver nanoparticles (AgNPs). Elemental analysis of EPS-coated AgNPs exhibited solid peaks of silver (39.66%) along with oxygen and carbon. TEM analysis confirmed the hexagonal shape of the AgNPs. Polydispersity index (PDI) reinforced the moderately monodisperse nature of the nanoparticles. High negative zeta potential indicated longer shelf life, good colloidal nature and high dispersive nature of the AgNPs. The B. anthracis PFAB2 EPS-coated AgNPs demonstrated prospective biocidal characters for both gram positive and gram negative bacteria along with some potentially hazardous fungi compared with the conventional antimicrobials. The results can be much expedient in the future for treatment of microorganisms that are otherwise resistant to traditional antibiotics or antifungal drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Björnmalm M, FariaCaruso M (2016) Increasing the impact of materials in and beyond bio-nano science. J Am Chem Soc 138:13449–13456

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Syed B, Karthik N, Bhat P, Bisht N, Prasad A, Satish S, Prasad MN (2018) Phyto-biologic bimetallic nanoparticles bearing antibacterial activity against human pathogens. J King Saud Univ Sci 31:798–803

    Article  Google Scholar 

  4. 4.

    Benelmekki M (2015) Designing hybrid nanoparticles. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  5. 5.

    Dakhil AS (2017) Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats. J King Saud Univ Sci 29:462–467

    Article  Google Scholar 

  6. 6.

    Banerjee A, Halder U, Bandopadhyay R (2017) Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J Clust Sci 28:1803–1813

    CAS  Article  Google Scholar 

  7. 7.

    Scala A, Piperno A, Hada A, Astilean S, Vulpoi A, Ginestra G, Marino A, Nostro A, Zammuto V, Gugliandolo C (2019) Marine bacterial exopolymers-mediated green synthesis of noble metal nanoparticles with antimicrobial properties. Polymers 11:1157

    CAS  PubMed Central  Article  Google Scholar 

  8. 8.

    Rajoka MSR, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z (2020) Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B 186:110734

    Article  CAS  Google Scholar 

  9. 9.

    Li G, Li Y, Wang Z, Liu H (2017) Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys 187:133–140

    CAS  Article  Google Scholar 

  10. 10.

    Banerjee A, Bandopadhyay R (2016) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mater Lett 2:188–194

    CAS  Article  Google Scholar 

  12. 12.

    Xie J, Lee JY, Wang DI, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Gallón SMN, Alpaslan E, Wang M, Larese-Casanova P, Londoño ME, Atehortúa L, Pavón JJ, Webster TJ (2019) Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Mater Sci Eng C 99:685–695

    Article  CAS  Google Scholar 

  15. 15.

    Esparza-Soto M, Westerhoff P (2003) Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res 37:2301–2310

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Resist 74:417–433

    CAS  Article  Google Scholar 

  18. 18.

    Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:25–64

    Google Scholar 

  20. 20.

    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40:277–283

    Google Scholar 

  21. 21.

    Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of silver in the prevention and treatment of infections: silver review. Surg Infect 14:8–20

    Article  Google Scholar 

  22. 22.

    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Banerjee A, Halder U, Chaudhry V, Varshney RK, Mantri S, Bandopadhyay R (2016) Draft genome sequence of the nonpathogenic, thermotolerant, and exopolysaccharide-producing Bacillus anthracis strain PFAB2 from Panifala hot water spring in West Bengal, India. Genome Announc 4:e01346-e1416

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Banerjee A, Rudra SG, Mazumder K, Nigam V, Bandopadhyay R (2018) Structural and functional properties of exopolysaccharide excreted by a novel Bacillus anthracis (Strain PFAB2) of hot spring origin. Indian J Microbiol 58:39–50

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Banerjee A, Somani VK, Chakraborty P, Bhatnagar R, Varshney RK, Echeverría-Vega A, Cuadros-Orellana S, Bandopadhyay R (2019) Molecular and genomic characterization of PFAB2: a non-virulent Bacillus anthracis strain isolated from an Indian hot spring. Curr Genom 20:491–507

    CAS  Article  Google Scholar 

  26. 26.

    Sengupta S, Banerjee A, Halder U, Gupta P, Banerjee C, Bandopadhyay R (2019) Comparative study on structure of exopolysaccharide and capsular polysaccharide produced by southern ocean origin Pseudoalteromonas sp. MB-16. Proc Natl Acad Sci India B 89:283–290

    CAS  Google Scholar 

  27. 27.

    Banerjee A, Gupta P, Nigam V, Bandopadhyay R (2019) Bacterial exopolysaccharides from extreme marine habitat of Southern Ocean: production and partial characterization. Gayana 83(2):126–134

    Article  Google Scholar 

  28. 28.

    Banerjee A, Das D, Rudra SG, Mazumder K, Andler R, Bandopadhyay R (2020) Characterization of exopolysaccharide produced by Pseudomonas sp. PFAB4 for synthesis of EPS-coated AgNPs with antimicrobial properties. J Polym Environ 28:242–256

    CAS  Article  Google Scholar 

  29. 29.

    Raliya R, Tarafdar JC, Mahawar H, Kumar R, Gupta P, Mathur T, Kaul RK, Kalia A, Gautam R, Singh SK, Gehlot HS (2014) ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications. Int J Biol Macromol 65:362–368

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M (2016) Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed Pharmacother 84:1213–1222

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Rasulov B, Rustamova N, Yili A, Zhao HQ, Aisa HA (2016) Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiol 61:283–293

    CAS  Article  Google Scholar 

  33. 33.

    Adhikari S, Lohar S, Kumari B, Banerjee A, Bandopadhyay R, Matalobos JS, Das D (2016) Cu (II) complex of a new isoindole derivative: structure, catecholase like activity, antimicrobial properties and bio-molecular interactions. New J Chem 40:10094–10099

    CAS  Article  Google Scholar 

  34. 34.

    Pal P, Banerjee A, Halder U, Pandey JP, Sen G, Bandopadhyay R (2018) Conferring antibacterial properties on Sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ 2018:3272–3282

    Article  CAS  Google Scholar 

  35. 35.

    Ider M, Abderrafi K, Eddahbi A, Ouaskit S, Kassiba A (2017) Silver metallic nanoparticles with surface plasmon resonance: synthesis and characterizations. J Clust Sci 28:1051–1069

    CAS  Article  Google Scholar 

  36. 36.

    Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B 65:150–153

    CAS  Article  Google Scholar 

  38. 38.

    Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    CAS  Article  Google Scholar 

  39. 39.

    Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A 101:184–190

    CAS  Article  Google Scholar 

  40. 40.

    Bankura KP, Maity D, Mollick MM, Mondal D, Bhowmick B, Bain MK, Chakraborty A, Sarkar J, Acharya K, Chattopadhyay D (2012) Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 89:1159–1165

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–335

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9:217–227

    CAS  Article  Google Scholar 

  43. 43.

    Ravichandran V, Vasanthi S, Shalini S, Shah SA, Harish R (2016) Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 180:264–267

    CAS  Article  Google Scholar 

  44. 44.

    Pal P, Banerjee A, Soren K, Chakraborty P, Pandey JP, Sen G, Bandopadhyay R (2019) Novel biocide based on cationic derivative of Psyllium: surface modification and antibacterial activity. J Polym Environ 27:1178–1190

    CAS  Article  Google Scholar 

  45. 45.

    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2013) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98:1951–1961

    Article  CAS  Google Scholar 

  47. 47.

    Lara HH, Ayala-Núñez NV, Turrent LD, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microb Biotechnol 26:615–621

    CAS  Article  Google Scholar 

  48. 48.

    Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    CAS  Article  Google Scholar 

  49. 49.

    Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manag 52:34–41

    Google Scholar 

  50. 50.

    Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Malaikozhundan B, Vaseeharan B, Vijayakumar S, Sudhakaran R, Gobi N, Shanthini G (2016) Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal Agric Biotechnol 8:189–196

    Article  Google Scholar 

  52. 52.

    Mandal D, Dash SK, Das B, Chattopadhyay S, Ghosh T, Das D, Roy S (2016) Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother 83:548–558

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed-Nanotechnol 5:382–386

    CAS  Article  Google Scholar 

  54. 54.

    Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloid Surf B 81:430–433

    CAS  Article  Google Scholar 

  55. 55.

    Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PB (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57:165–167

    PubMed  PubMed Central  Article  Google Scholar 

Download references


Authors are thankful to UGC-Center of Advanced Study, Department of Botany, The University of Burdwan for pursuing research activities. AB is thankful for the financial assistance to SRF (State Funded) [Fc (Sc.) /RS/SF/BOT./2014-15/ 103 (3)]. AB also acknowledge the support of FONDECYT Iniciación No. 11190325 by Govt. Of Chile and Centro de Biotecnología de los Recursos Naturales (CenBio), Universidad Católica del Maule.

Author information



Corresponding author

Correspondence to Rajib Bandopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Das, D., Andler, R. et al. Green Synthesis of Silver Nanoparticles Using Exopolysaccharides Produced by Bacillus anthracis PFAB2 and Its Biocidal Property. J Polym Environ (2021).

Download citation


  • Bacillus
  • Exopolysaccharide
  • Silver nanoparticle
  • Green synthesis
  • Biocidal property