Cellulose Nanocrystals Applications in Health, Medicine and Catalysis

Abstract

Cellulose nanocrystals (CNCs) is one of the outstanding nano-material. So far, much researcher nowadays has been developed their applications. It acquires several properties, particular in bio-degradability and low cost with chemical stability. These properties make CNCs a promising resource to replace fossil resources for the production of industrial materials, chemicals and biofuels. CNCs based materials have attracted much attention during the past few years and are widely used in biomedical materials, pharmaceutical industry, the auxiliary catalytic matrix and nanomedicine were discussed here. The CNCs industry is booming due to many possibilities of drug supply. Successful delivery is influenced by a number of factors, including the selection of suitable materials for research and development. It is used in the transdermal preparations to improve clinical results. It is used as an interdisciplinary approach that takes into accounts, opportunities and potential benefits of developing different management strategies in nature. It has attracted wide attention because of its unique nature, such as renewable, non-toxic, high surface area and the utilization of hydroxyl groups for its functionalization potential to develop various products and replace traditional petrochemical and non-biodegradable materials. This overview summarizes the latest development of model modeling for CNCs. Considerable progress has been made in handling these functions and potentially using of CNCs in different high-tech applications in different areas. This all are highlighted here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M (2020) Advance study of cellulose nanocrystals properties and applications. J Polym Environ 28(4):1117–1128. doi:https://doi.org/10.1007/s10924-020-01674-2

    CAS  Article  Google Scholar 

  2. 2.

    George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45-54. https://doi.org/10.2147/nsa.s64386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cheng M, Qin ZY, Hu J, Liu QQ, Wei T, Li WF, Ling Y, Liu B (2020) Facile and rapid one-step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2019.115701

    Article  Google Scholar 

  4. 4.

    Aziz T, Fan H, Haq F, Khan FU, Numan A, Ullah A, Wazir N (2019) Facile modification and application of cellulose nanocrystals. Iran Polym J 28(8):707–724. doi:https://doi.org/10.1007/s13726-019-00734-2

    Article  Google Scholar 

  5. 5.

    Nessi V, Falourd X, Maigret JE, Cahier K, D’Orlando A, Descamps N, Gaucher V, Chevigny C, Lourdin D (2019) Cellulose nanocrystals-starch nanocomposites produced by extrusion: structure and behavior in physiological conditions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115123

    Article  PubMed  Google Scholar 

  6. 6.

    Park NM, Choi S, Oh JE, Hwang DY (2019) Facile extraction of cellulose nanocrystals. Carbohydr Polym 223:1–5. https://doi.org/10.1016/j.carbpol.2019.115114

    CAS  Article  Google Scholar 

  7. 7.

    Shojaeiarani J, Bajwa D, Shirzadifar A (2019) A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym 216:247–259. https://doi.org/10.1016/j.carbpol.2019.04.033

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tian DL, Wang FF, Yang ZJ, Niu XL, Wu Q, Sun PC (2019) High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals. Carbohydr Polym 219:191–200. https://doi.org/10.1016/j.carbpol.2019.05.029

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yadav M, Chiu FC (2019) Cellulose nanocrystals reinforced kappa-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydr Polym 211:181–194. https://doi.org/10.1016/j.carbpol.2019.01.114

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Du HS, Liu WM, Zhang ML, Si CL, Zhang XY, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT (2020) Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): structures, functions, and biomedical applications. Int J Biol Macromol 155:456–469. https://doi.org/10.1016/j.ijbiomac.2020.03.171

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sabra A, Anderson PJ, Carson M, Shuja A, Sunasee R, Ckless K (2017) Immunological and oxidative responses caused by cellulose nanocrystal (CNCs) derivatives designed for biomedical applications, in human and mouse cells. Free Radical Bio Med 112:209–210. doi:https://doi.org/10.1016/j.freeradbiomed.2017.10.333

    Article  Google Scholar 

  13. 13.

    Aziz T, Fan H, Zhang X, Khan FU, Fahad S, Ullah A (2020) Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J Polym Eng 40(4):314. doi:https://doi.org/10.1515/polyeng-2019-0255

    CAS  Article  Google Scholar 

  14. 14.

    Ghasemi S, Behrooz R, Ghasemi I (2016) Extraction and characterization of nanocellulose structures from linter dissolving pulp using ultrafine grinder. J Nanosci Nanotechno 16(6):5791–5797. doi:https://doi.org/10.1166/jnn.2016.12416

    CAS  Article  Google Scholar 

  15. 15.

    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438–5466. https://doi.org/10.1002/anie.201001273

    CAS  Article  Google Scholar 

  16. 16.

    Patel DK, Dutta SD, Lim KT (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 9(33):19143–19162. doi:https://doi.org/10.1039/c9ra03261d

    CAS  Article  Google Scholar 

  17. 17.

    Salihu R, Foong CY, Abd Razak SI, Kadir MRA, Yusof AHM, Nayan NHM (2019) Overview of inexpensive production routes of bacterial cellulose and its applications in biomedical engineering. Cell Chem Technol 53(1–2):1–13. doi:https://doi.org/10.35812/CelluloseChemTechnol.2019.53.01

    CAS  Article  Google Scholar 

  18. 18.

    Li Z, Liu ZQ, Zhang J, Fu C, Wagenknecht U, Wang DY (2019) Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression. Chem Eng J 378:122046.1–14. doi:https://doi.org/10.1016/J.Cej.2019.122046

    Article  Google Scholar 

  19. 19.

    Li JF, Yang JS (2019) Synthesis of folate mediated carboxymethyl cellulose fatty acid ester and application in drug controlled release. Carbohydr Polym 220:126–131. https://doi.org/10.1016/j.carbpol.2019.05.052

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Yang YY, Li WB, Yu DG, Wang GH, Williams GR, Zhang Z (2019) Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 203:228–237. https://doi.org/10.1016/j.carbpol.2018.09.061

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bertsch P, Schneider L, Bovone G, Tibbitt MW, Fischer P, Gstohl S (2019) Injectable biocompatible hydrogels from cellulose nanocrystals for locally targeted sustained drug release. ACS Appl Mater Inter 11(42):38578–38585. doi:https://doi.org/10.1021/acsami.9b15896

    CAS  Article  Google Scholar 

  22. 22.

    Li D, Sun L, Zhang Y, Yu M, Guo J, Wang C (2017) Flexible assembly of targeting agents on porous magnetic nano-cargos by inclusion complexation for accurate drug delivery. Mater Chem Front 1(3):521–529. https://doi.org/10.1039/C6QM00049E

    CAS  Article  Google Scholar 

  23. 23.

    Yang P, Yuan X, Hu H, Liu Y, Zheng H, Yang D, Chen L, Cao M, Xu Y, Min Y, Li Y, Zhang Q (2018) Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater 28(1):1704774. doi:https://doi.org/10.1002/adfm.201704774

    CAS  Article  Google Scholar 

  24. 24.

    Xia BY, Wu HB, Li N, Yan Y, Lou XW, Wang X (2015) One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew Chem Int Ed 54(12):3797–3801. doi:https://doi.org/10.1002/anie.201411544

    CAS  Article  Google Scholar 

  25. 25.

    Rabbi MA, Rahman MM, Minami H, Habib MR, Ahmad H (2020) Ag impregnated sub-micrometer crystalline jute cellulose particles: catalytic and antibacterial properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115842

    Article  PubMed  Google Scholar 

  26. 26.

    Cho S, Li YF, Seo M, Kumacheva E (2016) Nanofibrillar stimulus-responsive cholesteric microgels with catalytic properties. Angew Chem Int Ed 55(45):14014–14018. doi:https://doi.org/10.1002/anie.201607406

    CAS  Article  Google Scholar 

  27. 27.

    Chong YY, Thangalazhy-Gopakumar S, Ng HK, Gan SY, Lee LY, Ganesan PB (2019) Catalytic pyrolysis of cellulose with oxides: effects on physical properties and reaction pathways. Clean Technol Envir 21(8):1629–1643. doi:https://doi.org/10.1007/s10098-019-01737-6

    CAS  Article  Google Scholar 

  28. 28.

    Hamid SBA, Chowdhury ZZ, Karim MZ, Ali ME (2016) Catalytic isolation and physicochemical properties of nanocrystalline cellulose (NCC) using HCl-FeCl3 system combined with ultrasonication. Bioresources 11(2):3840–3855. https://doi.org/10.15376/biores.11.2

    Article  Google Scholar 

  29. 29.

    Li N, Zhang H, Xiao Y, Huang YS, Xu MD, You DL, Lu W, Yu JH (2019) Fabrication of cellulose-nanocrystal-based folate targeted nanomedicine via layer-by-layer assembly with lysosomal pH-controlled drug release into the nucleus. Biomacromol 20(2):937–948. doi:https://doi.org/10.1021/acs.biomac.8b01556

    CAS  Article  Google Scholar 

  30. 30.

    Hosseinidoust Z, Alam MN, Sim G, Tufenkji N, van de Ven TGM (2015) Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7(40):16647–16657. doi:https://doi.org/10.1039/c5nr02506k

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Dumanli AG (2017) Nanocellulose and its composites for biomedical applications. Curr Med Chem 24(5):512–528. doi:https://doi.org/10.2174/0929867323666161014124008

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Jamil MI, Ali A, Haq F, Zhang Q, Zhan X, Chen F (2018) Icephobic strategies and materials with superwettability: design principles and mechanism. Langmuir 34(50):15425–15444. doi:https://doi.org/10.1021/acs.langmuir.8b03276

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Jamil MI, Zhan X, Chen F, Cheng D, Zhang Q (2019) Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. ACS Appl Mater Inter 11(34):31532–31542. doi:https://doi.org/10.1021/acsami.9b09819

    CAS  Article  Google Scholar 

  34. 34.

    Jamil MI, Song L, Zhu J, Ahmed N, Zhan X, Chen F, Cheng D, Zhang Q (2020) Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Adv 10(33):19157–19168. doi:https://doi.org/10.1039/D0RA01786H

    CAS  Article  Google Scholar 

  35. 35.

    Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2(8):3403–3409. doi:https://doi.org/10.1039/C2RA01071B

    CAS  Article  Google Scholar 

  36. 36.

    Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061. doi:https://doi.org/10.1111/jphp.12234

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719. doi:https://doi.org/10.1002/app.41719 1–19.

    CAS  Article  Google Scholar 

  38. 38.

    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    CAS  Article  Google Scholar 

  39. 39.

    Shaddy SM, Arnold MA, Shilo K, Frankel WL, Harzman AE, Stanich PP, Singhi AD, Yearsley MM, Arnold CA (2017) Crospovidone and microcrystalline cellulose A novel description of pharmaceutical fillers in the gastrointestinal tract. Am J Surg Pathol 41(4):564–569. doi:https://doi.org/10.1097/Pas.0000000000000790

    Article  PubMed  Google Scholar 

  40. 40.

    Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352. https://doi.org/10.1016/j.carbpol.2016.05.029

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Cao Y (2018) Applications of cellulose nanomaterials in pharmaceutical science and pharmacology. Express Polym Lett 12(9):768–780. doi:https://doi.org/10.3144/expresspolymlett.2018.66

    CAS  Article  Google Scholar 

  42. 42.

    Selkala T, Suopajarvi T, Sirvio JA, Luukkonen T, Lorite GS, Kalliola S, Sillanpaa M, Liimatainen H (2018) Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: the importance of pH and colloidal stability in the interaction with ionizable pollutants. Chem Eng J 350:378–385. https://doi.org/10.1016/j.cej.2018.05.163

    CAS  Article  Google Scholar 

  43. 43.

    Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88(2):465–473. doi:https://doi.org/10.1016/j.carbpol.2011.12.022

    CAS  Article  Google Scholar 

  44. 44.

    Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biot 99(6):2491–2511. doi:https://doi.org/10.1007/s00253-015-6426-3

    CAS  Article  Google Scholar 

  45. 45.

    Yang JS, Li JF (2018) Self-assembled cellulose materials for biomedicine: a review. Carbohydr Polym 181:264–274. https://doi.org/10.1016/j.carbpol.2017.10.067

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330. doi:https://doi.org/10.2147/IJN.S16749

    CAS  Article  Google Scholar 

  47. 47.

    Gómez-Carracedo A, Souto C, Martínez-Pacheco R, Concheiro A, Gómez-Amoza JL (2007) Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol® pellets. Eur J Pharm Biopharm 67(1):236–245. doi:https://doi.org/10.1016/j.ejpb.2007.01.006

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764. doi:https://doi.org/10.1007/s10570-013-9954-y

    CAS  Article  Google Scholar 

  49. 49.

    Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B 85(2):270–279. doi:https://doi.org/10.1016/j.colsurfb.2011.02.039

    CAS  Article  Google Scholar 

  50. 50.

    Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314. doi:https://doi.org/10.1007/s10570-016-0986-y

    CAS  Article  Google Scholar 

  51. 51.

    Kaushik M, Li AY, Hudson R, Masnadi M, Li C-J, Moores A (2016) Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chem 18(1):129–133. doi:https://doi.org/10.1039/C5GC01281C

    Article  Google Scholar 

  52. 52.

    Chu YY, Huang ZX, Liang K, Guo J, Boyer C, Xu JT (2018) A photocatalyst immobilized on fibrous and porous monolithic cellulose for heterogeneous catalysis of controlled radical polymerization. Polym Chem-Uk 9(13):1666–1673. doi:https://doi.org/10.1039/c7py01690e

    CAS  Article  Google Scholar 

  53. 53.

    Zhang J, Choi YS, Shanks BH (2016) Catalytic deoxygenation during cellulose fast pyrolysis using acid-base bifunctional catalysis. Catal Sci Technol 6(20):7468–7476. doi:https://doi.org/10.1039/c6cy01307d

    CAS  Article  Google Scholar 

  54. 54.

    Alimohammadzadeh R, Osong SH, Rafi AA, Dahlstrom C, Cordova A (2019) Sustainable surface engineering of lignocellulose and cellulose by synergistic combination of metal-free catalysis and polyelectrolyte complexes. Glob Chall 3(7):1–6. doi:https://doi.org/10.1002/Gch2.201900018

    Article  Google Scholar 

  55. 55.

    Sanderson K (2011) Lignocellulose: a chewy problem. Nature 474(7352):S12–S14. https://doi.org/10.1038/474S012a

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Chauhan P, Yan N (2015) Nanocrystalline cellulose grafted phthalocyanine: a heterogeneous catalyst for selective aerobic oxidation of alcohols and alkyl arenes at room temperature in a green solvent. RSC Adv 5(47):37517–37520. doi:https://doi.org/10.1039/C4RA16869K

    CAS  Article  Google Scholar 

  57. 57.

    Dusselier M, Sels BF (2014) Selective catalysis for cellulose conversion to lactic acid and other alpha-hydroxy acids. Top Curr Chem 353:85–125. https://doi.org/10.1007/128.2014.540

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Li SY, Cheng S, Cross JS (2020) Homogeneous and heterogeneous catalysis impact on pyrolyzed cellulose to produce bio-oil. Catalysts 270(1):110–124. doi:https://doi.org/10.1016/j.jcat.2009.12.013

    CAS  Article  Google Scholar 

  59. 59.

    Tai ZJ, Zhang JY, Wang AQ, Zheng MY, Zhang T (2012) Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem Commun 48(56):7052–7054. doi:https://doi.org/10.1039/c2cc32305b

    CAS  Article  Google Scholar 

  60. 60.

    Shaabani A, Keshipour S, Hamidzad M, Shaabani S (2014) Cobalt(II) phthalocyanine covalently anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. J Mol Catal A Chem 395:494–499. https://doi.org/10.1016/j.molcata.2014.09.003

    CAS  Article  Google Scholar 

  61. 61.

    Keshipour S, Khezerloo M (2017) Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene. J Iran Chem Soc 14(5):1107–1112. doi:https://doi.org/10.1007/s13738-017-1060-x

    CAS  Article  Google Scholar 

  62. 62.

    Wang BB, Dai L, Yang GH, Bendrich G, Ni YH, Fang GG (2019) A highly efficient thermo responsive palladium nanoparticles incorporated guar gum hydrogel for effective catalytic reactions. Carbohydr Polym 226:8. https://doi.org/10.1016/j.carbpol.2019.115289

    CAS  Article  Google Scholar 

  63. 63.

    Jiang J, Ye W, Yu J, Fan Y, Ono Y, Saito T, Isogai A (2018) Chitin nanocrystals prepared by oxidation of α-chitin using the O2/laccase/TEMPO system. Carbohydr Polym 189:178–183. https://doi.org/10.1016/j.carbpol.2018.01.096

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Raicopol MD, Andronescu C, Voicu SI, Vasile E, Pandele AM (2019) Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydr Polym 214:204–212. https://doi.org/10.1016/j.carbpol.2019.03.042

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Archer WL (1992) Hansen solubility parameters for selected cellulose ether derivatives and their use in the pharmaceutical-industry. Drug Dev Ind Pharm 18(5):599–616. doi:https://doi.org/10.3109/03639049209043713

    CAS  Article  Google Scholar 

  66. 66.

    Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I, Edgar KJ (2017) Designing novel bioconjugates of hydroxyethyl cellulose and salicylates for potential pharmaceutical and pharmacological applications. Int J Biol Macromol 103:441–450. doi:https://doi.org/10.1016/j.ijbiomac.2017.05.061

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Levis SR, Deasy PB (2001) Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharmaceut 230(1–2):25–33. doi:https://doi.org/10.1016/S0378-5173(01)00843-2

    CAS  Article  Google Scholar 

  68. 68.

    Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15(5):1560–1567. doi:https://doi.org/10.1021/bm401593n

    CAS  Article  Google Scholar 

  69. 69.

    Penabad-Pena L, Herrera-Morales J, Betancourt M, Nicolau E (2019) Cellulose acetate/P4VP-b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 4(27):22456–22463. doi:https://doi.org/10.1021/acsomega.9b03098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Al-Ibraheemi ZAM, Anuar MS, Taip FS, Amin MCI, Tahir SM, Mahdi AB (2013) Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particul Sci Technol 31(6):561–567. doi:https://doi.org/10.1080/02726351.2013.785451

    CAS  Article  Google Scholar 

  71. 71.

    Shanbhag A, Barclay B, Koziara J, Shivanand P (2007) Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose 14(1):65–71. doi:https://doi.org/10.1007/s10570-006-9091-y

    CAS  Article  Google Scholar 

  72. 72.

    Flores-Rojas GG, Lpez-Saucedo F, Vzquez E, Hernndez Mecinas E, Huerta L, Cedillo G, Concheiro A, Alvarez-Lorenzo C, Bucio E (2020) Synthesis of polyamide-6 cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs. Cellulose 27(5):2785–2801. doi:https://doi.org/10.1007/s10570-020-02986-1

    CAS  Article  Google Scholar 

  73. 73.

    Badshah M, Ullah H, Khan SA, Park JK, Khan T (2017) Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 24(11):5041–5052. doi:https://doi.org/10.1007/s10570-017-1474-8

    CAS  Article  Google Scholar 

  74. 74.

    Naderi Z, Azizian J, Moniri E, Farhadyar N (2020) Synthesis and characterization of carboxymethyl cellulose/beta-cyclodextrin/chitosan hydrogels and investgating the effect of magnetic nanoparticles (Fe3O4) on a novel carrier for a controlled release of methotrexate as drug delivery. J Inorg Organomet P 30(4):1339–1351. doi:https://doi.org/10.1007/s10904-019-01301-1

    CAS  Article  Google Scholar 

  75. 75.

    Mu H, Wang YQ, Wei HY, Lu H, Feng ZL, Yu HM, Xing Y, Wang HJ (2018) Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury. J Cell Mol Med 22(10):5008–5019. doi:https://doi.org/10.1111/jcmm.13768

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Wang R, Shou D, Lv O, Kong Y, Deng LH, Shen J (2017) pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol 103:248–253. doi:https://doi.org/10.1016/j.ijbiomac.2017.05.064

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Voon LK, Pang SC, Chin SF (2017) Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. J Chem Ny. https://doi.org/10.1155/2017/1943432

    Article  Google Scholar 

  78. 78.

    Oprea AM, Profire L, Lupusoru CE, Ghiciuc CM, Ciolacu D, Vasile C (2012) Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohydr Polym 87(1):721–729. https://doi.org/10.1016/j.carbpol.2011.08.052

    CAS  Article  Google Scholar 

  79. 79.

    Abhishek K, Sah Mahendra dewangan, Preeti K, Suresh (2019) Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surfaces B 178:185–198. https://doi.org/10.1016/j.colsurfb.2019.02.044

    CAS  Article  Google Scholar 

  80. 80.

    Zhang M, Akbulut M (2011) Adsorption, desorption, and removal of polymeric nanomedicine on and from cellulose surfaces: effect of size. Langmuir 27(20):12550–12559. https://doi.org/10.1021/la202287k

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their parent institution for providing the necessary facilities to complete the current research.

Funding

This research was funded by State Key Laboratory of Chemical Engineering, Zhejiang University 310027. Hangzhou, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aziz, T., Ullah, A., Fan, H. et al. Cellulose Nanocrystals Applications in Health, Medicine and Catalysis. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02045-1

Download citation

Keywords

  • Biomedical
  • Cellulose nanocrystals
  • Modification
  • Modeling
  • Nanomedicine
  • Pharmaceutical