Preparation and Properties of Enhanced Bio-Based PLA/PA6/Graphene Nanocomposites in the Presence of an Ester–Amide Exchange Catalyst

Abstract

Considering the importance of polylactic acid (PLA) biopolymer in industry, in this research we represent a protocol that benefits from the presence of PA6 phase (30 wt%), using an ester-amide exchange catalyst and GN as nanofiller to enhance PLA mechanical properties. To this purpose, it was decided to fabricate blends and nanocomposites in the presence of cobalt(II) acetylacetonate (Cat) as the catalyst. XRD patterns revealed good compatibility of the polymer moieties by broadening of the PLA characteristic peaks and also good dispersion of the GN nanoparticles within the matrix. In the TEM pictures, the GN nanoparticles size ranged from 20 to 130 nm which confirms its good intercalation and exfoliation. T0 and Tmax, considered as thermal stability, of the samples decreased slightly by reactive blending, however, the values were still comparable with them in pure PLA. DSC thermograms and the curves from DMTA exhibited the lower Tg, Tm and crystallinity values of PLA matrix in the alloys and nanocomposites especially in the presence of Cat. Investigation of tensile properties revealed significantly enhanced elongation at break, from 7 in origin PLA to the maximum of 29% in PLA/PA/Cat, with negligible deficiency in modulus, from 2.85 to a minimum of 1.95 GPa, and tensile strength, from 65 to a minimum of 46 MPa, respectively. MFI test results disclosed higher flow-ability of the alloys and composites in compare with neat PLA and also melt flow ratio in two different testing weighs, shows broad molecular weight distribution of the fabricates due to the occurrence of exchange reactions in the presence of Cat.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Claro PIC, Neto ARS, Bibbo ACC, Mattoso LHC, Bastos MSR, Marconcini JM (2016) Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. J Polym Environ 24(4):363–371. https://doi.org/10.1007/s10924-016-0785-4

    CAS  Article  Google Scholar 

  2. 2.

    González-López ME, Pérez-Fonseca AA, Cisneros-López EO, Manríquez-González R, Ramírez-Arreola DE, Rodrigue D, Robledo-Ortíz JR (2019) Effect of maleated PLA on the properties of rotomolded PLA-agave fiber biocomposites. J Polym Environ 27(1):61–73. https://doi.org/10.1007/s10924-018-1308-2

    CAS  Article  Google Scholar 

  3. 3.

    Mirmohammadi S, Imani M, Uyama H, Atai M (2013) In situ photocrosslinkable nanohybrids based on poly(E-caprolactone fumarate)/polyhedral oligomeric silsesquioxane: synthesis and characterization. J Polym Res 20(12):1–13. https://doi.org/10.1007/s10965-013-0297-z

    CAS  Article  Google Scholar 

  4. 4.

    Mirmohammadi SA, Imani M, Uyama H, Atai M, Teimouri MB, Bahri-Lale N (2014) The effects of solvent and initiator on anionic ring opening polymerization of ϵ-caprolactone: synthesis and characterization. Polym Int 63(3):479–485. https://doi.org/10.1002/pi.4531

    CAS  Article  Google Scholar 

  5. 5.

    Mirmohammadi SA, Nekoomanesh-Haghighi M, Mohammadian Gezaz S, Bahri-Laleh N, Atai M (2016) In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane. Mater Sci Eng C 68:530–539. https://doi.org/10.1016/j.msec.2016.06.027

    CAS  Article  Google Scholar 

  6. 6.

    Li X, Ai X, Pan H, Yang J, Gao G, Zhang H, Yang H, Dong L (2018) The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender. Polym Adv Technol 29(6):1706–1717. https://doi.org/10.1002/pat.4274

    CAS  Article  Google Scholar 

  7. 7.

    Mooninta S, Poompradub S, Prasassarakich P (2020) Packaging film of PP/LDPE/PLA/clay composite: physical, barrier and degradable properties. J Polym Environ 28(12):3116–3128. https://doi.org/10.1007/s10924-020-01840-6

    CAS  Article  Google Scholar 

  8. 8.

    Qin Y, Wang Y, Wu Y, Zhang Y, Li H, Yuan M (2015) Effect of hexadecyl lactate as plasticizer on the properties of poly(l-lactide) films for food packaging applications. J Polym Environ 23(3):374–382. https://doi.org/10.1007/s10924-014-0702-7

    CAS  Article  Google Scholar 

  9. 9.

    Irani-Kolash E, Moshiri-Gomchi N, Talebi-Liasi A, Sabahi S, Bahri-Laleh N, Mehdipour-Ataei S, Mokhtari-Aliabad J, Mirmohammadi SA (2020) Preparation of an enhanced nanohybrid alloy based on polylactic acid/polycarbonate/nanosilica. Plast Rubber Compos 49(6):263–270. https://doi.org/10.1080/14658011.2020.1743088

    CAS  Article  Google Scholar 

  10. 10.

    Didehban K, Yarahmadi E, Nouri-Ahangarani F, Mirmohammadi SA, Bahri-Laleh N (2015) Radar absorption properties of Ni0.5Zn0.5Fe2O4/PANI/epoxy nanocomposites. J Chin Chem Soc 62(9):826–831. https://doi.org/10.1002/jccs.201500136

    CAS  Article  Google Scholar 

  11. 11.

    Bahri-Laleh N, Didehban K, Yarahmadi E, Mirmohammadi SA, Wang G (2018) Microwave absorption properties of polyaniline/carbonyl iron composites. Silicon 10(4):1337–1343. https://doi.org/10.1007/s12633-017-9609-y

    CAS  Article  Google Scholar 

  12. 12.

    Hedayati F, Moshiri-Gomchi N, Assaran-Ghomi M, Sabahi S, Bahri-Laleh N, Mehdipour-Ataei S, Mokhtari-Aliabad J, Mirmohammadi SA (2020) Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polym Adv Technol 31(3):566–573. https://doi.org/10.1002/pat.4797

    CAS  Article  Google Scholar 

  13. 13.

    Kang H, Qiao B, Wang R, Wang Z, Zhang L, Ma J, Coates P (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54(9):2450–2458. https://doi.org/10.1016/j.polymer.2013.02.053

    CAS  Article  Google Scholar 

  14. 14.

    Parodi E, Govaert LE, Peters GWM (2017) Glass transition temperature versus structure of polyamide 6: a flash-DSC study. Thermochim Acta 657:110–122. https://doi.org/10.1016/j.tca.2017.09.021

    CAS  Article  Google Scholar 

  15. 15.

    Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites B 176:107341. https://doi.org/10.1016/j.compositesb.2019.107341

    CAS  Article  Google Scholar 

  16. 16.

    Shahzadi L, Zeeshan R, Yar M, Qasim SB, Chaudhry AA, Khan AF, Muhammad N (2018) Biocompatibility through cell attachment and cell proliferation studies of nylon 6/chitosan/ha electrospun mats. J Polym Environ 26(5):2030–2038. https://doi.org/10.1007/s10924-017-1100-8

    CAS  Article  Google Scholar 

  17. 17.

    Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S (2014) Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/Polyamide 6 blend. Polym Degrad Stabil 108:232–240. https://doi.org/10.1016/j.polymdegradstab.2014.04.019

    CAS  Article  Google Scholar 

  18. 18.

    Bijarimi M, Amirul M, Norazmi M, Ramli A, Desa M, Anuar Desa M, Abu Samah M (2019) Preparation and characterization of poly (lactic acid) (PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites. Mater Res Express 6:055044

    Article  Google Scholar 

  19. 19.

    Mirmohammadi SA, Imani M, Uyama H, Atai M (2014) Hybrid organic-inorganic nanocomposites based on poly(e-caprolactone)/polyhedral oligomeric silsesquioxane: synthesis and in vitro evaluations. Int J Polym Mater Polym Biomater 63(12):624–631. https://doi.org/10.1080/00914037.2013.854236

    CAS  Article  Google Scholar 

  20. 20.

    Phuong VT, Coltelli M-B, Cinelli P, Cifelli M, Verstichel S, Lazzeri A (2014) Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt. Polymer 55(17):4498–4513. https://doi.org/10.1016/j.polymer.2014.06.070

    CAS  Article  Google Scholar 

  21. 21.

    Feng F, Ye L (2010) Structure and property of polylactide/polyamide blends. J Macromol Sci B 49(6):1117–1127. https://doi.org/10.1080/00222341003609179

    CAS  Article  Google Scholar 

  22. 22.

    Shuhua W, Qiaoli X, Fen L, Jinming D, Husheng J, Bingshe X (2014) Preparation and properties of cellulose-based carbon microsphere/poly(lactic acid) composites. J Compos Mater 48(11):1297–1302. https://doi.org/10.1177/0021998313485263

    CAS  Article  Google Scholar 

  23. 23.

    Bahri-Laleh N, Seifali Abbas-Abadi M, Nekoomanesh-Haghighi M, Akbari Z, Tavasoli MR, Mirjahanmardi SH (2010) Effect of halocarbon promoters on polyethylene properties using MgCl2 (ethoxide type)/TiCl4/AlEt3/H2 catalyst system. J Appl Polym Sci 117(3):1780–1786

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Amin Mirmohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahimipour, S., Bahri-Laleh, N., Ehsani, M. et al. Preparation and Properties of Enhanced Bio-Based PLA/PA6/Graphene Nanocomposites in the Presence of an Ester–Amide Exchange Catalyst. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02044-2

Download citation

Keywords

  • Polylactic acid
  • Toughening
  • Polyamide 6
  • Exchange reaction
  • Nanographene