Study of the Moisture Mitigation and Toughening Effect of Fly‐ash Particles on Sisal Fiber‐Reinforced Hybrid Polypropylene Composites

Abstract

This study focused on developing fly-ash and sisal fiber reinforced hybrid polypropylene (PP) composites. The hybridized composite containing 15 wt.% each of sisal fiber and fly-ash shows highest impact strength of 1.42 kJ/m2, demonstrating an improvement by ~ 125 % and ~ 25 % respectively in comparison to neat PP and composite reinforced with only sisal fiber. Highest and lowest tensile strengths of 37.09 MPa and 24.69 MPa were recorded by composite containing 30 wt.% each of sisal fiber and fly ash with PP and impact modified PP respectively. Flexural strength recorded a greatest value of 44.09 MPa for 30 wt.% reinforced sisal fiber with PP against a lowest estimate of 30.86 MPa for 30 wt.% reinforced fly ash with impact modified PP. The FTIR results confirmed the esterification reaction among sisal fibers and maleic anhydride groups. DMA showed an apparent positive shift in the glass transition temperatures of hybrid composites upon the addition of fly ash. Composite reinforced with 30 wt.% sisal fiber and fly ash exhibited a storage modulus of 13,155 MPa and 8,795 MPa at −80 ºC, respectively. Thermal degradation stability of all the hybrid composites improved significantly. The lowest water uptake properties have been demonstrated from the composite with highest fly ash content (15 %).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Peças P, Carvalho H, Salman H, Leite M (2018) Natural Fibre Composites and Their Applications: A Review. J Compos Sci 2:66. https://doi.org/10.3390/jcs2040066

    CAS  Article  Google Scholar 

  2. 2.

    15 natural fibres | International Year of Natural Fibres (2009) http://www.fao.org/natural-fibres-2009/about/15-natural-fibres/en/. Accessed 28 Aug 2020

  3. 3.

    Naveen J, Jawaid M, Amuthakkannan P, Chandrasekar M (2018) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, pp 427–440

  4. 4.

    Kumar S, Prasad L, Kumar S, Patel VK (2019) Physico-mechanical and Taguchi-designed sliding wear properties of Himalayan agave fiber reinforced polyester composite. J Mater Res Technol 8:3662–3671. https://doi.org/10.1016/j.jmrt.2019.06.004

    CAS  Article  Google Scholar 

  5. 5.

    Kumar S, Prasad L, Kumar S, Patel VK (2019) Physicomechanical and Taguchi optimized abrasive wear behaviour of KOH/KMnO4/NaHCO3 treated Himalayan Agave fiber reinforced polyester composite. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6387

    Article  Google Scholar 

  6. 6.

    Effects of Agro-Waste and Bio-Particulate Fillers on Mechanical and Wear Properties of Sisal Fibre Based Polymer Composites | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S2214785317311392?token=F97D34A0053C2F2636E00ACC2A8BC3651FEE587E71E83BABDCDE113192A20BF209B4CC6F7CFC5E004927410E05997FEA. Accessed 26 Nov 2020

  7. 7.

    Kumar S, Mer KKS, Gangil B, Patel VK (2019) Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. J Mater Res Technol 8:2070–2082. https://doi.org/10.1016/j.jmrt.2018.12.021

    CAS  Article  Google Scholar 

  8. 8.

    Sumesh K, Kanthavel K (2020) Grey relational optimization for factors influencing tensile, flexural, and impact properties of hybrid sisal banana fiber epoxy composites. J Ind Text. https://doi.org/10.1177/1528083720928501

    Article  Google Scholar 

  9. 9.

    Sumesh K, Kanthavel K (2020) Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models. J Ind Text. https://doi.org/10.1177/1528083720930304

    Article  Google Scholar 

  10. 10.

    Sumesh KR, Kanthavel K (2020) Effect of TiO2 nano-filler in mechanical and free vibration damping behavior of hybrid natural fiber composites. J Brazilian Soc Mech Sci Eng 42:211. https://doi.org/10.1007/s40430-020-02308-3

    Article  Google Scholar 

  11. 11.

    Nourbakhsh A, Kokta BV, Ashori A, Jahan-Latibari A (2008) Effect of a novel coupling agent, polybutadiene isocyanate, on mechanical properties of wood-fiber polypropylene composites. J Reinf Plast Compos 27:1679–1687. https://doi.org/10.1177/0731684407087377

    CAS  Article  Google Scholar 

  12. 12.

    Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: A review. J Appl Polym Sci 77(20000711):409–417. https://doi.org/10.1002/(SICI)1097-4628 9 :AID-APP18>3.0.CO;2-N ) : 77:2<40

    CAS  Article  Google Scholar 

  13. 13.

    Abreu FOMS, Forte MMC, Liberman SA (2005) SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J Appl Polym Sci 95:254–263. https://doi.org/10.1002/app.21263

    CAS  Article  Google Scholar 

  14. 14.

    Panaitescu DM, Vuluga Z, Sanporean CG et al (2019) High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Compos Part B Eng 174:107062. https://doi.org/10.1016/j.compositesb.2019.107062

    CAS  Article  Google Scholar 

  15. 15.

    Mokhothu TH, John MJ (2015) Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr Polym 131:337–354. https://doi.org/10.1016/j.carbpol.2015.06.027

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Mokhothu TH, John MJ (2017) Bio-based coatings for reducing water sorption in natural fibre reinforced composites. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-13859-2

    CAS  Article  Google Scholar 

  17. 17.

    Koohestani B, Mokhtari AKDP, Darezereshki EYE (2019) Comparison of different natural fiber treatments: a literature review. Int J Environ Sci Technol 16:629–642. https://doi.org/10.1007/s13762-018-1890-9

    CAS  Article  Google Scholar 

  18. 18.

    Wu J, Yu D, Chan C et al (2006) Effect of Fiber Pretreatment Condition on the Interfacial Strength and Mechanical Properties of Wood Fiber / PP Composites. 1000–1010

  19. 19.

    Agrawal R, Saxena NS, Sharma KB et al (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82. https://doi.org/10.1016/s0921-5093(99)00556-0

    Article  Google Scholar 

  20. 20.

    Pang AL, Ismail H (2013) Tensile properties, water uptake, and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioResources 8:806–817. https://doi.org/10.15376/biores.8.1.806-817

    Article  Google Scholar 

  21. 21.

    Hamidon MH, Sultan MTH, Ariffin AH, Shah AUM (2019) Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. J Mater Res Technol 8:3327–3337. https://doi.org/10.1016/j.jmrt.2019.04.012

    CAS  Article  Google Scholar 

  22. 22.

    De J, Baxi RN (2016) Coupling Agent Individual and Combined Effect of Mercerization and Silane Coupling Agent Treatment on Mechanical Properties of Bamboo. Int Conf Technol Adv Mater Manuf Ind Environ 44–51

  23. 23.

    Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    CAS  Article  Google Scholar 

  24. 24.

    Kumar N, Mireja S, Khandelwal V et al (2017) Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Compos Part B Eng 109:277–285. https://doi.org/10.1016/J.COMPOSITESB.2016.10.052

    CAS  Article  Google Scholar 

  25. 25.

    Jain M (2014) Dwivedi A (2014) Fly ash – waste management and overview: A Review Fly ash – waste management and overview : A Review. Recent Res Sci Technol 6(1):30–35

    Google Scholar 

  26. 26.

    Bhattacharjee U, Kandpal TC (2002) Potential of fly ash utilisation in India. Energy 27:151–166. https://doi.org/10.1016/S0360-5442(01)00065-2

    CAS  Article  Google Scholar 

  27. 27.

    Joseph S, Bambola VA, Sherhtukade VV, Mahanwar PA (2011) Effect of flyash content, particle size of flyash, and type of silane coupling agents on the properties of recycled poly (ethylene terephthalate)/flyash composites. J Appl Polym Sci 119:201–208

    CAS  Article  Google Scholar 

  28. 28.

    Ares A, Pardo SG, Abad MJ et al (2010) Effect of aminomethoxy silane and olefin block copolymer on rheomechanical and morphological behavior of fly ash-filled polypropylene composites. Rheol Acta 49:607–618. https://doi.org/10.1007/s00397-009-0417-1

    CAS  Article  Google Scholar 

  29. 29.

    Raj M, Joshi S, Savaliya R, Raj L (2018) Studies on the effects of cenosphere on polypropylene matrix using silane coupling agent. J Thermoplast Compos Mater 31:1510–1528. https://doi.org/10.1177/0892705717738301

    CAS  Article  Google Scholar 

  30. 30.

    Sengupta S, Pal K, Ray D, Mukhopadhyay A (2011) Furfuryl palmitate coated fly ash used as filler in recycled polypropylene matrix composites. Compos Part B Eng 42:1834–1839. https://doi.org/10.1016/j.compositesb.2011.06.021

    CAS  Article  Google Scholar 

  31. 31.

    Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: Value-added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1:574–584. https://doi.org/10.1021/sc3000948

    CAS  Article  Google Scholar 

  32. 32.

    Pappu A, Thakur VK (2017) Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum 146:375–385. https://doi.org/10.1016/j.vacuum.2017.05.026

    CAS  Article  Google Scholar 

  33. 33.

    Satapathy S, Kothapalli RVS (2018) Mechanical, Dynamic Mechanical and Thermal Properties of Banana Fiber/Recycled High Density Polyethylene Biocomposites Filled with Flyash Cenospheres. J Polym Environ 26:200–213. https://doi.org/10.1007/s10924-017-0938-0

    CAS  Article  Google Scholar 

  34. 34.

    Sharma R, Maiti SN (2014) Effects of Crystallinity of PP and Flexibility of SEBS-g-MA Copolymer on the Mechanical Properties of PP/SEBS-g-MA Blends. Polym - Plast Technol Eng 53:229–238. https://doi.org/10.1080/03602559.2013.843706

    CAS  Article  Google Scholar 

  35. 35.

    Wang X, Feng W, Li H, Ruckenstein E (2001) Optimum toughening via a bicontinuous blending: Toughening of PPO with SEBS and SEBS-g-maleic anhydride. Polymer 43:37–43. https://doi.org/10.1016/S0032-3861(01)00601-2

    Article  Google Scholar 

  36. 36.

    Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol 100:6088–6097. https://doi.org/10.1016/j.biortech.2009.05.076

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Sumesh KR, Kavimani V, Rajeshkumar G et al (2020) An Investigation into the Mechanical and Wear Characteristics of Hybrid Composites: Influence of Different Types and Content of Biodegradable Reinforcements. J Nat Fibers 00:1–13. https://doi.org/10.1080/15440478.2020.1821297

    CAS  Article  Google Scholar 

  38. 38.

    Khandelwal S, Rhee KY (2020) Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Compos Part B Eng 192:108011. https://doi.org/10.1016/j.compositesb.2020.108011

    CAS  Article  Google Scholar 

  39. 39.

    Gogoi R, Kumar N, Mireja S et al (2019) Effect of Hollow Glass Microspheres on the Morphology, Rheology and Crystallinity of Short Bamboo Fiber-Reinforced Hybrid Polypropylene Composite. JOM 71:548–558. https://doi.org/10.1007/s11837-018-3268-3

    CAS  Article  Google Scholar 

  40. 40.

    Gogoi R, Manik G, Arun B (2019) High specific strength hybrid polypropylene composites using carbon fibre and hollow glass microspheres: Development, characterization and comparison with empirical models. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2019.05.086

    Article  Google Scholar 

  41. 41.

    Mohanty S, Nayak SK, Verma SK, Tripathy SS Effect of MAPP as Coupling Agent on the Performance of Sisal-PP. Composites. https://doi.org/10.1177/0731684404041711

  42. 42.

    Jarukumjorn K, Suppakarn N (2009) Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Compos Part B Eng 40:623–627. https://doi.org/10.1016/j.compositesb.2009.04.007

    CAS  Article  Google Scholar 

  43. 43.

    Kaewkuk S, Sutapun W, Jarukumjorn K (2013) Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Compos Part B Eng 45:544–549. https://doi.org/10.1016/j.compositesb.2012.07.036

    CAS  Article  Google Scholar 

  44. 44.

    Naushad M, Nayak SK, Mohanty S, Panda BP (2017) Mechanical and damage tolerance behavior of short sisal fiber reinforced recycled polypropylene biocomposites. J Compos Mater 51:1087–1097. https://doi.org/10.1177/0021998316658945

    CAS  Article  Google Scholar 

  45. 45.

    Rahman MR, Islam MN, Huque MM (2010) Influence of Fiber Treatment on the Mechanical and Morphological Properties of Sawdust Reinforced Polypropylene Composites. J Polym Environ 18:443–450. https://doi.org/10.1007/s10924-010-0230-z

    CAS  Article  Google Scholar 

  46. 46.

    Noorunnisa Khanam P, Abdul Khalil HPS, Ramachandra Reddy G, Venkata Naidu S (2011) Tensile, Flexural and Chemical Resistance Properties of Sisal Fibre Reinforced Polymer Composites: Effect of Fibre Surface Treatment. J Polym Environ 19:115–119. https://doi.org/10.1007/s10924-010-0219-7

    CAS  Article  Google Scholar 

  47. 47.

    Sanadi AR, Sanadi AR (2000) Transcrystalline interphases in natural fiber-PP composites: Effect of coupling agent. Compos Interfaces 7:31–43. https://doi.org/10.1163/156855400300183560

    CAS  Article  Google Scholar 

  48. 48.

    Simonsen J, Jacobsen R, Rowell R (1997) Wood-Fiber Reinforcement of Styrene – Maleic Anhydride Copolymers. J Appl Polym Sci 68:1567–1573

    Article  Google Scholar 

  49. 49.

    Costa CSMF, Fonseca AC, Serra AC, Coelho JFJ (2016) Dynamic Mechanical Thermal Analysis of Polymer Composites Reinforced with Natural Fibers. Polym Rev 56:362–383. https://doi.org/10.1080/15583724.2015.1108334

    CAS  Article  Google Scholar 

  50. 50.

    Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    CAS  Article  Google Scholar 

  51. 51.

    Doddipatla P, Agrawal S (2018) Effect of treatment of fly ash on mechanical properties of polypropylene. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.759.20

    Article  Google Scholar 

  52. 52.

    Petra Fillit 100W – 500W – Fillite Technical Specification. https://www.indiacenosphere.com/techspecifiation.html. Accessed 2 Jul 2020

  53. 53.

    Sumesh K, Kavimani V, Rajeshkumar G et al (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural fibers and oil cake filler addition. J Ind Text. https://doi.org/10.1177/1528083720971344

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors of this work acknowledge IIT Roorkee and the Ministry of Human Resources and Development (MHRD), the financial support provided in the form of a research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaurav Manik.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1406 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Gogoi, R. & Manik, G. Study of the Moisture Mitigation and Toughening Effect of Fly‐ash Particles on Sisal Fiber‐Reinforced Hybrid Polypropylene Composites. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02043-3

Download citation

Keywords

  • Hybrid composites
  • Polypropylene
  • Fly‐ash
  • Sisal fiber
  • Eco‐friendly