Skip to main content
Log in

Identification and Model Predictive Control (MPC) of Aqueous Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The performance of two continuous UV/H2O2 photoreactors in series under unsteady-state condition is studied. An input–output dynamic model is constructed to describe the degradation of water-soluble polyvinyl alcohol (PVA) in photoreactors. Identification techniques, AutoRegressive with eXogenous input (ARX) and AutoRegressive Moving Average with eXogenous input (ARMAX), are employed to construct transfer functions. The simulation is carried out for an open-loop operation by applying step changes to the input variables (PVA and H2O2 inlet concentrations and PVA feed flow rate) using the developed model. For effluent total organic carbon (TOC) and H2O2 concentrations as responses, a model predictive control (MPC) scheme is developed to control the photoreactors to maintain desired values of process variables for setpoint and load changes. The closed-loop simulation results show that the multi-input/multi-output (MIMO) MPC produce a good performance for tracking setpoint changes in the TOC and H2O2 concentrates at the photoreactor effluent and it is also able to handle process interactions and constraints. The MPC controller successfully suppresses stochastic disturbances of the inlet PVA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ostacea GS, Baeza J, Guerrero J, Guisasola A, Cristeaa V, Paul S, Agachi E, Lafuente J (2013) Comput Chem Eng 53:164–177

    Article  Google Scholar 

  2. Lucas N, Bienaime C, Belloy C, Silvestre F, Nava-Saucedo J (2008) Chemosphere 73(4):429–442

    Article  CAS  Google Scholar 

  3. Mehrvar M, Anderson WA, Moo-Young M (2000) Int J Photoenergy 2(2):67–80

    Article  CAS  Google Scholar 

  4. Mehrvar M, Anderson WA, Moo-Young M (2001) Int J Photoenergy 3(4):187–191

    Article  CAS  Google Scholar 

  5. Mehrvar M, Anderson WA, Moo-Young M (2002) Adv Environ Res 6(4):411–418

    Article  CAS  Google Scholar 

  6. Ghafoori S, Mehrvar M, Chan PK (2014) Chem Eng J 245:133–142

    Article  CAS  Google Scholar 

  7. Hamad D, Dhib R, Mehrvar M (2016) J Polym Environ 24:72–83

    Article  CAS  Google Scholar 

  8. Hamad D, Mehrvar M, Dhib R (2018) J Polym Environ 26:3283–3293

    Article  CAS  Google Scholar 

  9. Nagy ZK, Braatz R (2004) J Process Control 14:411–422

    Article  CAS  Google Scholar 

  10. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2012) IFAC Proc 16(1):1448–1453

    Article  Google Scholar 

  11. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2013) Control Eng Pract 21(1):105–112

    Article  Google Scholar 

  12. Bhadrirajua B, Narasingama A, Kwon J (2019) Chem Eng Res Des 152:372–383

    Article  Google Scholar 

  13. Shen W, Chen X, Corrioub JP (2008) Comput Chem Eng 32:2849–2856

    Article  CAS  Google Scholar 

  14. Nogueira IR, Fontes RM, Ribeiro AM, Pontes KV, Embiruçu M, Martins AF (2020) Comput Chem Eng 133:106664

    Article  CAS  Google Scholar 

  15. Ostacea GS, Cristea VM, Agachi PŞ (2011) Comput Chem Eng 35:2469–2479

    Article  Google Scholar 

  16. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2013) Proceedings of the 3rd international conference on systems and control, Algiers, Algeria

  17. Maria G, Constantinescu C, Ozil P (2002) Comput Aided Chem Eng 8(C):841–846

    Google Scholar 

  18. Özbek M, Bayram G, Özgen C (2014) Polym Eng Sci 54(2):459–465

    Article  Google Scholar 

  19. Chen CL, Hsu SH, Lin WK, Wang TC (2000) J Chin Inst Chem Eng 31(3):283–293

    CAS  Google Scholar 

  20. Yoo C, Lee H, Lee I (2002) 15th Terminal World Congress, Barcelona, Spain

  21. Richalet J, Rault A, Testud JL, Papon J (1978) Automatica 14(2):413–428

    Article  Google Scholar 

  22. Qin SJ, Badgwell TA (2003) Control Eng Pract 1:733–764

    Article  Google Scholar 

  23. Stare A, Hvala N, Vrecko D (2006) ISA Trans 45(2):159–174

    Article  CAS  Google Scholar 

  24. Zhu Y, Arrieta E, Butoyi F, Cortes F (2002) Hydrocarb Process 79(2):65–72

    Google Scholar 

  25. Jacob NC, Dhib R (2012) J Ind Eng Chem 18(5):1781–1795

  26. Abukhalifeh H, Dhib R, Fayed M (2005) Drying Technol 23:497–511

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ryerson University Faculty of Engineering and Architectural Science Dean’s Research Fund is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrab Mehrvar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, D., Dhib, R. & Mehrvar, M. Identification and Model Predictive Control (MPC) of Aqueous Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors. J Polym Environ 29, 2572–2584 (2021). https://doi.org/10.1007/s10924-020-02031-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02031-z

Keywords

Navigation