Identification and Model Predictive Control (MPC) of Aqueous Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors

Abstract

The performance of two continuous UV/H2O2 photoreactors in series under unsteady-state condition is studied. An input–output dynamic model is constructed to describe the degradation of water-soluble polyvinyl alcohol (PVA) in photoreactors. Identification techniques, AutoRegressive with eXogenous input (ARX) and AutoRegressive Moving Average with eXogenous input (ARMAX), are employed to construct transfer functions. The simulation is carried out for an open-loop operation by applying step changes to the input variables (PVA and H2O2 inlet concentrations and PVA feed flow rate) using the developed model. For effluent total organic carbon (TOC) and H2O2 concentrations as responses, a model predictive control (MPC) scheme is developed to control the photoreactors to maintain desired values of process variables for setpoint and load changes. The closed-loop simulation results show that the multi-input/multi-output (MIMO) MPC produce a good performance for tracking setpoint changes in the TOC and H2O2 concentrates at the photoreactor effluent and it is also able to handle process interactions and constraints. The MPC controller successfully suppresses stochastic disturbances of the inlet PVA concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Ostacea GS, Baeza J, Guerrero J, Guisasola A, Cristeaa V, Paul S, Agachi E, Lafuente J (2013) Comput Chem Eng 53:164–177

    Article  Google Scholar 

  2. 2.

    Lucas N, Bienaime C, Belloy C, Silvestre F, Nava-Saucedo J (2008) Chemosphere 73(4):429–442

    CAS  Article  Google Scholar 

  3. 3.

    Mehrvar M, Anderson WA, Moo-Young M (2000) Int J Photoenergy 2(2):67–80

    CAS  Article  Google Scholar 

  4. 4.

    Mehrvar M, Anderson WA, Moo-Young M (2001) Int J Photoenergy 3(4):187–191

    CAS  Article  Google Scholar 

  5. 5.

    Mehrvar M, Anderson WA, Moo-Young M (2002) Adv Environ Res 6(4):411–418

    CAS  Article  Google Scholar 

  6. 6.

    Ghafoori S, Mehrvar M, Chan PK (2014) Chem Eng J 245:133–142

    CAS  Article  Google Scholar 

  7. 7.

    Hamad D, Dhib R, Mehrvar M (2016) J Polym Environ 24:72–83

    CAS  Article  Google Scholar 

  8. 8.

    Hamad D, Mehrvar M, Dhib R (2018) J Polym Environ 26:3283–3293

    CAS  Article  Google Scholar 

  9. 9.

    Nagy ZK, Braatz R (2004) J Process Control 14:411–422

    CAS  Article  Google Scholar 

  10. 10.

    Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2012) IFAC Proc 16(1):1448–1453

    Article  Google Scholar 

  11. 11.

    Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2013) Control Eng Pract 21(1):105–112

    Article  Google Scholar 

  12. 12.

    Bhadrirajua B, Narasingama A, Kwon J (2019) Chem Eng Res Des 152:372–383

    Article  Google Scholar 

  13. 13.

    Shen W, Chen X, Corrioub JP (2008) Comput Chem Eng 32:2849–2856

    CAS  Article  Google Scholar 

  14. 14.

    Nogueira IR, Fontes RM, Ribeiro AM, Pontes KV, Embiruçu M, Martins AF (2020) Comput Chem Eng 133:106664

    CAS  Article  Google Scholar 

  15. 15.

    Ostacea GS, Cristea VM, Agachi PŞ (2011) Comput Chem Eng 35:2469–2479

    Article  Google Scholar 

  16. 16.

    Abouzlam M, Ouvrard R, Mehdi D, Pontlevoyá F, Gombert B, Vel Leitner N, Boukar S (2013) Proceedings of the 3rd international conference on systems and control, Algiers, Algeria

  17. 17.

    Maria G, Constantinescu C, Ozil P (2002) Comput Aided Chem Eng 8(C):841–846

    Google Scholar 

  18. 18.

    Özbek M, Bayram G, Özgen C (2014) Polym Eng Sci 54(2):459–465

    Article  Google Scholar 

  19. 19.

    Chen CL, Hsu SH, Lin WK, Wang TC (2000) J Chin Inst Chem Eng 31(3):283–293

    CAS  Google Scholar 

  20. 20.

    Yoo C, Lee H, Lee I (2002) 15th Terminal World Congress, Barcelona, Spain

  21. 21.

    Richalet J, Rault A, Testud JL, Papon J (1978) Automatica 14(2):413–428

    Article  Google Scholar 

  22. 22.

    Qin SJ, Badgwell TA (2003) Control Eng Pract 1:733–764

    Article  Google Scholar 

  23. 23.

    Stare A, Hvala N, Vrecko D (2006) ISA Trans 45(2):159–174

    CAS  Article  Google Scholar 

  24. 24.

    Zhu Y, Arrieta E, Butoyi F, Cortes F (2002) Hydrocarb Process 79(2):65–72

    Google Scholar 

  25. 25.

    Jacob NC, Dhib R (2012) J Ind Eng Chem 18(5):1781–1795

  26. 26.

    Abukhalifeh H, Dhib R, Fayed M (2005) Drying Technol 23:497–511

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ryerson University Faculty of Engineering and Architectural Science Dean’s Research Fund is greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehrab Mehrvar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamad, D., Dhib, R. & Mehrvar, M. Identification and Model Predictive Control (MPC) of Aqueous Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors. J Polym Environ (2021). https://doi.org/10.1007/s10924-020-02031-z

Download citation

Keywords

  • Process identification
  • Photooxidation
  • UV/H2O2 process
  • Water-soluble polymers
  • Model predictive control
  • Advanced oxidation processes