Mimic Enzyme Based Cellulose Nanocrystals/PVA Nanocomposite Membranes for Enrichment of Biogas as a Natural Gas Substitute


Nanocomposite membranes promoted by mimic enzyme was developed and optimized for biogas upgrading at moderately high pressure applications up to 15 bar. Zn based mimic enzyme (Zn-cyclen) was synthesized. Different concentrations of selected mimic enzyme were added in nanocomposite membranes containing 1% crystalline nanocellulose (CNC) and 2% polyvinyl alcohol (PVA). The addition of mimic enzyme improved separation performance. The optimal results were obtained with 5 µmol/g addition of mimic enzyme at 10 pH. Furthermore, the addition of mimic enzyme showed abrupt change in moisture uptake ability and the maximum values were found for addition of 0.005wt% of mimic enzyme loading. Permeation testing showed that presence of moisture content plays important role in the activation of mimic enzyme. Furthermore, at high pH values mimic enzyme showed improved CO2 hydration rates. SEM results exhibited smooth morphology and no significant different in membrane thickness with increase in the mimic enzyme concentration. Moreover, the decline in membrane performance was observed with increasing pressure up to 15 bar. CNC/PVA based membranes with optimal loading of mimic enzyme showed significantly high separation than pure PVA membrane; a permeance of 0.34 [m3(STP)/m2 bar hr] and selectivity of 42.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. Journal of CO2 Utilization 3:65–73

    Article  Google Scholar 

  2. 2.

    Ramdin M, de Loos TW, Vlugt TJ (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51(24):8149–8177

    CAS  Article  Google Scholar 

  3. 3.

    Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari M-C, Gross R, Hallett JP (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189

    CAS  Article  Google Scholar 

  4. 4.

    Sharma T, Sharma S, Kamyab H, Kumar A (2019) Energizing the CO2 utilization by Chemo enzymatic approaches and potentiality of carbonic anhydrases: A review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119138

    Article  Google Scholar 

  5. 5.

    Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35(5):1633–1645

    CAS  Article  Google Scholar 

  6. 6.

    Baker RW (2000) Membrane technology. Wiley, NJ, USA

    Google Scholar 

  7. 7.

    Mulder J (2003) Basic Principles of Membrane Technology, 2nd edn. Kluwer Academic Publishers, Springer, Netherlands

    Google Scholar 

  8. 8.

    Kim TJ, Li B, Hägg MB (2004) Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci, Part B: Polym Phys 42(23):4326–4336

    CAS  Article  Google Scholar 

  9. 9.

    Liao J, Wang Z, Gao C, Li S, Qiao Z, Wang M, Zhao S, Xie X, Wang J, Wang S (2014) Fabrication of high-performance facilitated transport membranes for CO2 separation. Chemical Science 5(7):2843–2849

    CAS  Article  Google Scholar 

  10. 10.

    Saeed M, Deng L (2016) Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. Int J Greenh Gas Con 53:254–262

    CAS  Article  Google Scholar 

  11. 11.

    Trachtenberg MC, Tu C, Landers RA, Willson RC, McGregor ML, Laipis PJ, Kennedy JF, Paterson M, Silverman DN, Thomas D (1999) Carbon dioxide transport by proteic and facilitated transport membranes. Life Support & Biosphere Science 6(4):293–302

    CAS  Google Scholar 

  12. 12.

    Yang W, Ciferno J (2006) Assessment of carbozyme enzyme-based membrane technology for CO2 capture from flue gas. DOE/NETL 401:072606

    Google Scholar 

  13. 13.

    Davy R (2009) Development of catalysts for fast, energy efficient post combustion capture of CO2 into water; an alternative to monoethanolamine (MEA) solvents. Energy Procedia 1(1):885–892

    CAS  Article  Google Scholar 

  14. 14.

    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and microbial technology 40(6):1451–1463

    CAS  Article  Google Scholar 

  15. 15.

    Satcher J, Baker S, Kulik H, Valdez C, Krueger R, Lightstone F, Aines R (2011) Modeling, synthesis and characterization of zinc containing carbonic anhydrase active site mimics. Energy Procedia 4:2090–2095

    CAS  Article  Google Scholar 

  16. 16.

    Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M (2002) Kinetic study of catalytic CO2 hydration by water-soluble model compound of carbonic anhydrase and anion inhibition effect on CO2 hydration. J Inorg Biochem 89(3):255–266

    CAS  Article  Google Scholar 

  17. 17.

    Ibrahim MM, Shaban SY, Ichikawa K (2008) A promising structural zinc enzyme model for CO2 fixation and calcification. Tetrahedron Lett 49(51):7303–7306

    CAS  Article  Google Scholar 

  18. 18.

    Saeed M, Deng LY (2015) CO2 facilitated transport membrane promoted by mimic enzyme. J Membr Sci 494:196–204. https://doi.org/10.1016/j.memsci.2015.07.028

    CAS  Article  Google Scholar 

  19. 19.

    Zhang X, van Eldik R (1995) A functional model for carbonic anhydrase: thermodynamic and kinetic study of a tetraazacyclododecane complex of zinc (II). Inorg Chem 34(22):5606–5614

    CAS  Article  Google Scholar 

  20. 20.

    Koziol L, Valdez CA, Baker SE, Lau EY, Floyd WC III, Wong SE, Satcher JH Jr, Lightstone FC, Aines RD (2012) Toward a small molecule, biomimetic carbonic anhydrase model: theoretical and experimental investigations of a panel of zinc (II) aza-macrocyclic catalysts. Inorg Chem 51(12):6803–6812

    CAS  Article  Google Scholar 

  21. 21.

    Yao K, Wang Z, Wang J, Wang S (2012) Biomimetic material—poly (N-vinylimidazole)–zinc complex for CO2 separation. Chem Commun 48(12):1766–1768

    CAS  Article  Google Scholar 

  22. 22.

    Saeed M, Deng L (2016) Post-combustion CO2 membrane absorption promoted by mimic enzyme. J Membr Sci 499:36–46

    CAS  Article  Google Scholar 

  23. 23.

    Sahoo PC, Kumar M, Puri S, Ramakumar S (2018) Enzyme inspired complexes for industrial CO2 capture: opportunities and challenges. Journal of CO2 Utilization 24:419–429

    CAS  Article  Google Scholar 

  24. 24.

    Pierre AC (2012) Enzymatic carbon dioxide capture. ISRN Chemical Engineering. https://doi.org/10.5402/2012/753687

    Article  Google Scholar 

  25. 25.

    Jahan Z, Niazi MBK, Hägg M-B, Gregersen ØW (2018) Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure. J Membr Sci 554:275–281

    CAS  Article  Google Scholar 

  26. 26.

    Jahan Z, Niazi MBK, Gregersen ØW (2018) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124

    CAS  Article  Google Scholar 

  27. 27.

    Cao XD, Lucia LA (2010) Fabrication and properties of cellulose/cellulose nanocrystal composite nanofibers. Abstr Pap Am Chem S 239:118083

    Google Scholar 

  28. 28.

    Molnes SN, Torrijos IP, Strand S, Paso KG, Syverud K (2016) Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions-Premises for use of CNC in enhanced oil recovery. Ind Crop Prod 93:152–160

    CAS  Article  Google Scholar 

  29. 29.

    Niazi MBK, Broekhuis AA (2015) Surface photo-crosslinking of plasticized thermoplastic starch films. Eur Polym J 64:229–243. https://doi.org/10.1016/j.eurpolymj.2015.01.027

    CAS  Article  Google Scholar 

  30. 30.

    Kárászová M, Vejražka J, Veselý V, Friess K, Randová A, Hejtmánek V, Brabec L, Izák P (2012) A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2012.01.037

    Article  Google Scholar 

  31. 31.

    Akhtar FH, Kumar M, Vovusha H, Shevate R, Villalobos LF, Schwingenschlögl U, Peinemann K-V (2019) Scalable Synthesis of Amphiphilic Copolymers for CO2-and Water-Selective Membranes: Effect of Copolymer Composition and Chain Length. Macromolecules 52(16):6213–6226

    CAS  Article  Google Scholar 

  32. 32.

    Deng LY, Kim TJ, Hagg MB (2009) Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci 340(1–2):154–163. https://doi.org/10.1016/j.memsci.2009.05.019

    CAS  Article  Google Scholar 

  33. 33.

    Puspasari T, Akhtar FH, Ogieglo W, Alharbi O, Peinemann K-V (2018) High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose. Journal of Materials Chemistry A 6(19):9271–9279

    CAS  Article  Google Scholar 

  34. 34.

    Floyd WC III, Baker SE, Valdez CA, Stolaroff JK, Bearinger JP, Satcher JH Jr, Aines RD (2013) Evaluation of a carbonic anhydrase mimic for industrial carbon capture. Environ Sci Technol 47(17):10049–10055

    CAS  Article  Google Scholar 

  35. 35.

    Akhtar FH, Kumar M, Peinemann K-V (2017) Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation. J Membr Sci 525:187–194

    CAS  Article  Google Scholar 

  36. 36.

    He X, Hagg MB (2017) Investigation on Nanocomposite Membranes for High Pressure CO2/CH4 Separation. J Membr Sci Technol. https://doi.org/10.4172/2155-9589.1000169

    Article  Google Scholar 

  37. 37.

    Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) A zinc (II) complex of 1, 5, 9-triazacyclododecane ([12] aneN3) as a model for carbonic anhydrase. J Am Chem Soc 112(15):5805–5811

    CAS  Article  Google Scholar 

Download references


The national university of Science and Technology (NUST) Islamabad Pakistan supported one of the authors Zaib Jahan. The Norwegian Research Council also cofounded the work as a project: NanoMBE, Project Number 239172 of the Nano2021 program. This research did not receive any other specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Zaib Jahan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahan, Z., Niazi, M.B.K., Gul, S. et al. Mimic Enzyme Based Cellulose Nanocrystals/PVA Nanocomposite Membranes for Enrichment of Biogas as a Natural Gas Substitute. J Polym Environ (2021). https://doi.org/10.1007/s10924-020-02014-0

Download citation


  • Mimic enzyme
  • Metallo organic enzyme
  • Nanocomposite membranes
  • Facilitated transport
  • Biogas
  • Hydration reaction