A Study About Water/Alkali Treatments of Hemp Fiber on Ultraviolet Ageing of the Reinforced Polypropylene Composites

Abstract

Ultraviolet (UV) ageing is one main environmental factor affecting the service performance and life of plant fiber reinforced composites. Plant fiber treatment or modification is an essential step in composite preparation to deal with the poor interfacial strength between plant fiber and thermoplastic matrix. Our previous study shows that water treatment is one green fiber treatment method and has potential industrial application. In this paper, effects of water and alkali treatment of hemp fiber on UV resistance of the reinforced polypropylene (PP) composites were studied. Hemp fiber was treated with water and alkali solution firstly, and then blended with PP, respectively. UV ageing of the PP composites was performed. Digital microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were employed to characterize composite degradation. Water uptake and tensile tests were also conducted to deeply understand the effects of water and alkali treatment on UV ageing of the composites. The surface observation results showed that UV ageing occurs around the fiber locations on composite surface in early stage, both water and alkali treatment of fiber could retard surface whitening and cracking of the composites. After 4 weeks, carbonyl index of the composite reinforced with untreated fiber reached up to 29.3 while that of the composites reinforced with water or alkali treated fiber was only 19.6. The XRD patterns also confirmed that both water and alkali treatment have less crystallization after 8 weeks. Water uptake of composites is greatly decreased from 2.5 to 1.0% by water or alkali treatment of hemp fibers. However, either water or alkali treatment didn’t give obvious contribution to resist the deterioration of composite tensile properties. The hydrophilicity and water absorption of hemp fiber play an important role in UV degradation of composites. Water and alkali treatment could greatly decrease water absorption, which is beneficial to improve UV resistance of plant fiber reinforced composites. This study is helpful to deeply understand UV ageing mechanism and develop related anti-UV ageing technology of plant fiber reinforced composites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208. https://doi.org/10.1016/j.carbpol.2017.06.065

    CAS  Article  Google Scholar 

  2. 2.

    Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 79:558–584. https://doi.org/10.1016/j.rser.2017.05.094

    Article  Google Scholar 

  3. 3.

    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    CAS  Article  Google Scholar 

  4. 4.

    Luo J, Chang H, Bakhtiary Davijani AA et al (2017) Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose 24:1745–1758. https://doi.org/10.1007/s10570-017-1219-8

    CAS  Article  Google Scholar 

  5. 5.

    Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99. https://doi.org/10.1016/j.jobe.2016.12.003

    Article  Google Scholar 

  6. 6.

    Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    CAS  Article  Google Scholar 

  7. 7.

    Monteiro SN, Lopes FPD, Barbosa AP et al (2011) Natural lignocellulosic fibers as engineering materials-an overview. Metall Mater Trans A 42:2963–2974. https://doi.org/10.1007/s11661-011-0789-6

    CAS  Article  Google Scholar 

  8. 8.

    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    CAS  Article  Google Scholar 

  9. 9.

    Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Composites B 101:31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

    CAS  Article  Google Scholar 

  10. 10.

    Kato K, Vasilets VN, Fursa MN et al (1999) Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. J Polym Sci A 37:357–361. https://doi.org/10.1002/(SICI)1099-0518(19990201)37:3<357:AID-POLA13>3.0.CO;2-2

    CAS  Article  Google Scholar 

  11. 11.

    Rahman GMS, Al MMA, Khan MA (2014) Effect of γ (Gamma)-radiation on the physico-mechanical properties of grafted jute fabric reinforced polypropylene (PP) composites. Fibers Polym 15:340–346. https://doi.org/10.1007/s12221-014-0340-7

    CAS  Article  Google Scholar 

  12. 12.

    Khan MA, Haque N, Al-Kafi A et al (2006) Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polym Plast Technol Eng 45:607–613. https://doi.org/10.1080/03602550600554141

    CAS  Article  Google Scholar 

  13. 13.

    Wang Q, Fan XR, Cui L et al (2009) Plasma-aided cotton bioscouring: dielectric barrier discharge versus low-pressure oxygen plasma. Plasma Chem Plasma Process 29:399–409. https://doi.org/10.1007/s11090-009-9187-x

    CAS  Article  Google Scholar 

  14. 14.

    Fan Z, Di L, Zhang X, Wang H (2019) A surface dielectric barrier discharge plasma for preparing cotton-fabric-supported silver nanoparticles. Nanomaterials 9:961. https://doi.org/10.3390/nano9070961

    CAS  Article  PubMed Central  Google Scholar 

  15. 15.

    Rajasekaran P, Opländer C, Hoffmeister D et al (2011) Characterization of dielectric barrier discharge (DBD) on mouse and histological evaluation of the plasma-treated tissue. Plasma Process Polym 8:246–255. https://doi.org/10.1002/ppap.201000122

    CAS  Article  Google Scholar 

  16. 16.

    Botaro VR, Dos Santos CG, Arantes Júnior G, Da Costa AR (2001) Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Appl Surf Sci 183:120–125. https://doi.org/10.1016/S0169-4332(01)00571-2

    CAS  Article  Google Scholar 

  17. 17.

    Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23. https://doi.org/10.1016/j.apsusc.2013.02.086

    CAS  Article  Google Scholar 

  18. 18.

    Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym Eng Sci 49:1253–1272. https://doi.org/10.1002/pen.21328

    CAS  Article  Google Scholar 

  19. 19.

    Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites B 43:2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    CAS  Article  Google Scholar 

  20. 20.

    Kaczmar JW, Pach J, Burgstaller C (2011) The chemically treated hemp fibres to reinforce polymers. Polimery/Polymers 56:817–822. https://doi.org/10.14314/polimery.2011.817

    CAS  Article  Google Scholar 

  21. 21.

    Le Troedec M, Sedan D, Peyratout C et al (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composites A 39:514–522. https://doi.org/10.1016/j.compositesa.2007.12.001

    CAS  Article  Google Scholar 

  22. 22.

    Friedrich D (2018) Comparative study on artificial and natural weathering of wood-polymer compounds: a comprehensive literature review. Case Stud Constr Mater 9:e00196. https://doi.org/10.1016/j.cscm.2018.e00196

    Article  Google Scholar 

  23. 23.

    Joseph PV, Rabello MS, Mattoso LHCC et al (2002) Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Compos Sci Technol 62:1357–1372. https://doi.org/10.1016/S0266-3538(02)00080-5

    CAS  Article  Google Scholar 

  24. 24.

    Lu T, Solis-Ramos E, Yi Y-B, Kumosa M (2016) Synergistic environmental degradation of glass reinforced polymer composites. Polym Degrad Stab 131:1–8. https://doi.org/10.1016/j.polymdegradstab.2016.06.025

    CAS  Article  Google Scholar 

  25. 25.

    Ogier L, Rabello MS, White JR (1995) Influence of morphology and surface preparation on the weatherability of polypropylene. J Mater Sci 30:2364–2376. https://doi.org/10.1007/BF01184588

    CAS  Article  Google Scholar 

  26. 26.

    Prieto JB, Arbeloa T, Liras M et al (2006) Concerning the color change of pyrromethene 650 dye in electron-donor solvents. J Photochem Photobiol A 184:298–305. https://doi.org/10.1016/j.jphotochem.2006.04.043

    CAS  Article  Google Scholar 

  27. 27.

    Cogulet A, Blanchet P, Landry V (2016) Wood degradation under UV irradiation: a lignin characterization. J Photochem Photobiol B 158:184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Deka M, Humar M, Rep G et al (2008) Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Sci Technol 42:5–20. https://doi.org/10.1007/s00226-007-0147-4

    CAS  Article  Google Scholar 

  29. 29.

    Zhou M, Li Y, He C et al (2014) Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22–29. https://doi.org/10.1016/j.compscitech.2013.11.019

    CAS  Article  Google Scholar 

  30. 30.

    Han HC, Gong XL (2016) One-step green treatment of hemp fiber used in polypropylene composites. Polym Compos 37:385–390. https://doi.org/10.1002/pc.23191

    CAS  Article  Google Scholar 

  31. 31.

    Han HC, Gong XL (2014) Investigation of humidity ageing mechanism of hemp fiber reinforced polypropylene composites. In: 16th European Conference on Composite Materials, ECCM 2014. European Conference on Composite Materials, ECCM, University of Technology of Troyes (UTT), Charles Delaunay Institute, LASMIS, UMR CNRS 6281, 12 Rue Marie Curie, Troyes Cedex, France, pp 22–26

  32. 32.

    Stark NM (2006) Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites. J Appl Polym Sci 100:3131–3140. https://doi.org/10.1002/app.23035

    CAS  Article  Google Scholar 

  33. 33.

    Rabello MS, White JR (1997) The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym Degrad Stab 56:55–73. https://doi.org/10.1016/S0141-3910(96)00202-9

    CAS  Article  Google Scholar 

  34. 34.

    Bouza R, Marco C, Martín Z, et al (2006) Dynamic crystallization of polypropylene and wood-based composites

  35. 35.

    Fechine GJM, Demarquette NR (2008) Cracking formation on the surface of extruded photodegraded polypropylene plates. Polym Eng Sci 48:365–372. https://doi.org/10.1002/pen.20958

    CAS  Article  Google Scholar 

  36. 36.

    Rabello MS, White JR (1996) Photodegradation of polypropylene mouldings containing weld lines: mechanical properties and surface cracking. Plast Rubber Compos Process Appl 25:237–248

    CAS  Google Scholar 

  37. 37.

    Yakimets I, Lai D, Guigon M (2004) Effect of photo-oxidation cracks on behaviour of thick polypropylene samples. Polym Degrad Stab 86:59–67. https://doi.org/10.1016/j.polymdegradstab.2004.01.013

    CAS  Article  Google Scholar 

  38. 38.

    Seldén R, Nyström B, Långström R (2004) UV aging of poly(propylene)/wood-fiber composites. Polym Compos 25:543–553. https://doi.org/10.1002/pc.20048

    CAS  Article  Google Scholar 

  39. 39.

    Ndiaye D, Fanton E, Morlat-Therias S et al (2008) Durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. Compos Sci Technol 68:2779–2784. https://doi.org/10.1016/j.compscitech.2008.06.014

    CAS  Article  Google Scholar 

  40. 40.

    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    CAS  Article  Google Scholar 

  41. 41.

    Girois S, Delprat P, Audouin L, Verdu J (1997) Oxidation thickness profiles during photooxidation of non-photostabilized polypropylene. Polym Degrad Stab 56:169–177. https://doi.org/10.1016/S0141-3910(96)00175-9

    CAS  Article  Google Scholar 

  42. 42.

    Islam MS, Pickering KL, Foreman NJ (2010) Influence of hygrothermal ageing on the physico-mechanical properties of alkali treated industrial hemp fibre reinforced polylactic acid composites. J Polym Environ 18:696–704. https://doi.org/10.1007/s10924-010-0225-9

    CAS  Article  Google Scholar 

  43. 43.

    Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907. https://doi.org/10.1007/s10853-007-1876-3

    CAS  Article  Google Scholar 

  44. 44.

    Favaro MM, Branciforti MC, Bretas RES (2009) A X-ray study of β-phase and molecular orientation in nucleated and non-nucleated injection molded polypropylene resins. Mater Res 12:455–464. https://doi.org/10.1590/S1516-14392009000400014

    CAS  Article  Google Scholar 

  45. 45.

    Sangappa RBL, Asha S, Somashekar R (2013) Effect of alkali treatment on the physical and surface properties of Indian hemp fibers. AIP Conf Proc 1512:586–587. https://doi.org/10.1063/1.4791173

    CAS  Article  Google Scholar 

  46. 46.

    Gassan J, Bledzki AK (1999) Alkali treatment of jute fibers: relationship between structure and mechanical properties

  47. 47.

    Liu H, You L, Jin H, Yu W (2013) Influence of alkali treatment on the structure and properties of hemp fibers. Fibers Polym 14:389–395. https://doi.org/10.1007/s12221-013-0389-8

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Doctor LI YuGang for his works in conducting the XRD detections, the financial support from the Innovative Research Team of Southwest Petroleum University (Grant No. 2017CXTD01), 2018 Annual student return science and technology activities project (Sichuan), Young scholars development fund of SWPU (Grant No. 201799010019) and Open Fund (PLN201927) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University).

Author information

Affiliations

Authors

Corresponding author

Correspondence to HongChang Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, H., Gong, X., Zhou, M. et al. A Study About Water/Alkali Treatments of Hemp Fiber on Ultraviolet Ageing of the Reinforced Polypropylene Composites. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01799-4

Download citation

Keywords

  • Ultraviolet ageing
  • Water/alkali treatment
  • Hemp fiber
  • Polypropylene composites