The Effect Hydrophilic/Hydrophobic Interaction of 2-((Dimethylamino)methyl)-4-formyl-6 methoxyphenyl Acrylate and 4-Acetylphenyl Acrylate Monomers on the Phase Transition Temperature of N-isopropylacrylamide Terpolymers

Abstract

To achieve functional polymer with thermo-pH responsivity, new functional monomers have been prepared. One is based on vanillin as a renewable material of 2-((dimethylamino)methyl)-4-formyl-6-methoxyphenyl acrylate (DMAMVA), and the other based on 4-hydroxyacetophenone 4-acetylphenyl acrylate (APA). The new monomers were evaluated with 1H, 13C NMR, FTIR, and UV. The next step was focused on preparing a new series of thermo-pH functional polymer with three different molar concentrations of DMAMVA and one molar concentration of APA; they were evaluated by 1H NMR and FTIR. The effect of hydrophilic/hydrophobic groups based on the new monomers on the phase separation and the lower critical solution temperature of N-isopropylacrylamide has been investigated using two methods; the turbidity method by UV–Vis spectroscopy in which the change in transmittance has been taken with the temperature of the polymer solution. On the other hand, micro-DSC was used to recode the transition temperature at the onset value of the thermogram. Moreover, polymers have been fully investigated by GPC for molecular weight, DSC for glass temperature, XRD for the degree of crystallinity and SEM for surface morphological features. This study will be progressed in the future as the preparation of post-polymerization and formation of hydrogel for targeting biomolecules and their responsivity to both temperature and pH.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Xiaoming H, Chen Z, Yufu T, Feng L, Yuanyuan L, Feng P, Xiaomei L, Yu J, Jie L, Wenjun W, Quli F, Wei H (2019) Intelligent polymer–MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem Commun 55:6006–6009. https://doi.org/10.1039/C9CC02148E

    Article  Google Scholar 

  2. 2.

    Abdelaty MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ. https://doi.org/10.1007/s10924-019-01421-2

    Article  Google Scholar 

  3. 3.

    Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:1–13. https://doi.org/10.3390/gels2010003

    CAS  Article  Google Scholar 

  4. 4.

    Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin. J Polym Environ 26:2243–2256. https://doi.org/10.1007/s10924-017-1126-y

    CAS  Article  Google Scholar 

  5. 5.

    Liang H, Qiang Z, Xue L, Michael JS (2019) Stimuli-responsive polymers for sensing and actuation. Mater Horiz 6:1774–1793. https://doi.org/10.1039/C9MH00490D

    Article  Google Scholar 

  6. 6.

    Seidi F, Jenjob R, Crespy D (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 11:3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

    CAS  Article  Google Scholar 

  7. 7.

    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003

    CAS  Article  Google Scholar 

  8. 8.

    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7-1

    CAS  Article  Google Scholar 

  9. 9.

    Jan S, Seema A (2013) Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks. ACS Macro Lett 7:597–600. https://doi.org/10.1021/mz400227y

    CAS  Article  Google Scholar 

  10. 10.

    Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH. Nature 373:49–52. https://doi.org/10.1038/373049a0

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hoffman AS, Stayton PS, Bulmus V (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586. https://doi.org/10.1002/1097-4636(20001215)52

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT (2011) Tannic acid mediated suppression of PNIPAAm microgels thermoresponsive behaviour. Macromolecules 44:612–621. https://doi.org/10.1021/ma1025016

    CAS  Article  Google Scholar 

  13. 13.

    Yang HW, Chena JK, Cheng CC, Kuo SW (2013) Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition. Appl Surf Sci 271:60–69. https://doi.org/10.1016/j.apsusc.2013.01.074

    CAS  Article  Google Scholar 

  14. 14.

    Sonia L, Elaine A (2017) Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3:1–32. https://doi.org/10.3390/gels3040036

    CAS  Article  Google Scholar 

  15. 15.

    Zhao T, Chen H, Zheng J, Yu Q, Wu Z, Yuan L (2011) Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: effect of graft molecular weight. Colloid Surf B Biointerfaces 85:26–31

    CAS  Article  Google Scholar 

  16. 16.

    Matsuura M, Ohshima M, Hiruta Y, Nishimura T, Nagase K, Kanazawa H (2018) LAT1-targeting thermoresponsive fluorescent polymer probes for cancer cell imaging. Int J Mol Sci 19:1646–1663

    Article  Google Scholar 

  17. 17.

    Adhimoorthy P, Hsieh-Chih T, Yu-Shuan C, Ging-Ho H (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2:1988–1997. https://doi.org/10.1039/C3TB21360A

    Article  Google Scholar 

  18. 18.

    Joko S, Alan F, Cahit E (2011) Synthesis and characterization of surface grafted poly(N-isopropylacrylamide) and poly(carboxylic acid): iron particles via atom transfer radical polymerization for biomedical applications. J Appl Polym Sci 131:40176. https://doi.org/10.1002/app.40176

    CAS  Article  Google Scholar 

  19. 19.

    Adhimoorthy P, Hsieh-Chih T, Ging-Ho H (2018) Formulation and evaluation of epinephrine-loaded poly (acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React Funct Polym 124:40–47. https://doi.org/10.1016/j.reactfunctpolym.2018.01.001

    CAS  Article  Google Scholar 

  20. 20.

    Ying C, Yongbing C, Jingya N, Chunpeng W, Fuxiang C (2012) Hollow poly(N-isopropylacrylamide)-co-poly(acrylic acid) microgels with high loading capacity for drugs. J Appl Polym Sci 124:4678–4685. https://doi.org/10.1002/app.35515

    CAS  Article  Google Scholar 

  21. 21.

    Aditya J, Nandi D, Chester A, Marie M (2018) Study of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM) microgel particle induced deformations of tissue-mimicking phantom by ultrasound stimulation. Langmuir 34:1457–1465. https://doi.org/10.1021/acs.langmuir.7b02801

    CAS  Article  Google Scholar 

  22. 22.

    Lai H, Wu PA (2010) Infrared spectroscopic study on the mechanism of temperature-induced phase transition of concentrated aqueous solutions of poly(N-isopropylacrylamide) and N-isopropylpropionamide. Polymer 51:1404–1412

    CAS  Article  Google Scholar 

  23. 23.

    Tsung-Yu Wu, Alyssa B, Zrimsek SV, Bykov RSJ, Sanford AA (2018) Hydrophobic collapse initiates the poly(N-isopropylacrylamide) volume phase transition reaction coordinate. J Phys Chem B 122:3008–3014

    Article  Google Scholar 

  24. 24.

    Sun B, Lin Y, Wu P, Siesler HW (2008) A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution. Macromolecules 41:1512–1520

    CAS  Article  Google Scholar 

  25. 25.

    Firdaus M, Meier M (2013) Renewable copolymers derived from vanillin and fatty acid derivatives. Eur Polym J 49:156–166. https://doi.org/10.1016/j.eurpolymj.2012.10.017

    CAS  Article  Google Scholar 

  26. 26.

    Mialon L, Vanderhenst R, Pemba AG, Miller SA (2011) Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin. Macromol Rapid Commun 32:1386–1392. https://doi.org/10.1002/marc.201100242

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ananda SA, Bernard W, Ashfaqur R (2012) Vanillin based polymers: I. An electrochemical route to polyvanillin. Green Chem 14:2395–2397. https://doi.org/10.1039/C2GC35645G

    Article  Google Scholar 

  28. 28.

    Xiwei Xu, Sheng W, Songqi Ma, Wangchao Y, Jie F, Zhu J (2019) Vanillin derived phosphorus containing compounds and ammonium polyphosphate as green fire resistant systems for epoxy resins with balanced properties. Polym Adv Technol 30:264–278. https://doi.org/10.1002/pat.4461

    CAS  Article  Google Scholar 

  29. 29.

    Fache M, Darroman E, Besse V, Auvergne R, Sylvain Caillol S, Boutevina B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998. https://doi.org/10.1039/C3GC42613K

    CAS  Article  Google Scholar 

  30. 30.

    Abdelaty MSA (2020) Influence of vanillin acrylate and 4-acetylphenyl acrylate hydrophobic functional monomers on phase separation of N-isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull 77:2905–2922. https://doi.org/10.1007/s00289-019-02890-0

    CAS  Article  Google Scholar 

  31. 31.

    Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (part 2): temperature responsive layer a, functional, temperature and pH layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    CAS  Article  Google Scholar 

  32. 32.

    Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and N-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    CAS  Article  Google Scholar 

  33. 33.

    Abdelaty MSA (2018) Preparation and characterization of environmental functional poly(styrene-co-2-[(diethylamino)methyl]-4-formyl-6-methoxy-phenyl acrylate) copolymers for amino acid post polymerization. Open J Polym Chem 8:41–55. https://doi.org/10.4236/ojpchem.2018.83005

    CAS  Article  Google Scholar 

  34. 34.

    Abdelaty MSA, Kuckling D (2018) Poly(N-isopropyl acrylamide-co-vanillin acrylate) dual responsive functional copolymers for grafting biomolecules by Schiff’s base click reaction. Open J Organ Polym Mater 8:15–32. https://doi.org/10.4236/ojopm.2018.82002

    CAS  Article  Google Scholar 

  35. 35.

    Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138

    Article  Google Scholar 

  36. 36.

    Feil H, Bae YH, Feijen J, Kim W (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    CAS  Article  Google Scholar 

  37. 37.

    Yin X, Hoffman AS, Stayton PS (2006) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromol 7:1381–1385. https://doi.org/10.1021/bm0507812

    CAS  Article  Google Scholar 

  38. 38.

    Sasaki S, Okabe S, Miyahara Y (2010) Thermodynamic properties of N-isopropylacrylamide in water: solubility transition, phase separation of supersaturated solution, and glass formation. J Phys Chem B 114:14995–15002. https://doi.org/10.1021/jp1055792

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Roy C, Dutta A, Mahapatra M, Karmakar M, DebRoy JS, Mitra M, Chattopadhyay PK, Ranjan NS (2019) Collagenic waste and rubber based resin-cured biocomposite adsorbent for high-performance removal(s) of Hg(II), safranine, and brilliant cresyl blue: a cost-friendly waste management approach. J Hazard Mater 369:199–213. https://doi.org/10.1016/j.jhazmat.2019.02.004

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Mitra M, Mahapatra M, Dutta A, Roy JSD, Karmakar M, Deb M, Mondal H, Chattopadhyay PK, Bandyopadhyay A, Singha NR (2019) J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.12.019

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Paderborn.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. The Effect Hydrophilic/Hydrophobic Interaction of 2-((Dimethylamino)methyl)-4-formyl-6 methoxyphenyl Acrylate and 4-Acetylphenyl Acrylate Monomers on the Phase Transition Temperature of N-isopropylacrylamide Terpolymers. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01790-z

Download citation

Keywords

  • pH-functional
  • Hydrophilic/hydrophobic
  • Phase transition temperature
  • N-isopropylacrylamide