Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine

Abstract

Especially in orthopedics and implant applications, the bone cements are the main pillar of implants to form permanent bonds with the body. However, the main risk factor for implants is infection and loosening of the implant over time. This situation can seriously compromise patient comfort and even patient life. Therefore, superior mechanical strength, biocompatibility and antimicrobial properties are required for comfortable and healthy use. In this study, antibacterial bone cements synthesized as bone filler for application in orthopedic surgeries. Compositon was conducted by synthesing polymethyl methacrylate in the presence of curcumin, polyhedral oligomeric silsesquioxane (POSS), hydroxyapatite and free radical curable PEG functional quaternary polyethylenimine and were analyzed by using the methods of X-ray diffraction, Fourier Transform Infrared Spectroscopy, dynamic mechanical analysis and scanning electron microscopy. The inhibition zone areas and the surface activity resistances of the bone cement composites were analyzed against the bacteria Escherichia coli (E. coli), Listeria monositogenes (L. monositogenes), Salmonella and Staphylococcus aureus (S. aureus). Biocompatibility analysis was also applied via MTS assay. Analysis results confirm the suitable surface biocidal activity along with high cells viability of curcumin and pegylated quaternary polyethylene based bone cement, indicating its potentials for orthopedic applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chen L, Tang Y, Zhao K, Zha X, Liu J, Bai H, Wu Z (2019) Colloids Surf B 183:110448

    CAS  Article  Google Scholar 

  2. 2.

    Li Q, Liu Z, Chen W, Yuan B, Liu X, Chen W (2019) Cement Concr Compos 104:103357

    CAS  Article  Google Scholar 

  3. 3.

    Ayatollahi MR, Mirmohammadi SA, Shirazi HA (2018) Arch Civil Mech Eng 18:50–59

    Article  Google Scholar 

  4. 4.

    Zima A, Czechowska J, Siek D, Slosarczyk A (2017) Ceram Int 43:16196–16203

    CAS  Article  Google Scholar 

  5. 5.

    Nahid Siddiqui M, Hamid Redhwi H, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS (2015) Eur Polymer J 72:256–269

    Article  Google Scholar 

  6. 6.

    Chauhan NPS, Kumari Jangid N, Juneja P (2016) Encycl Biomed Polym Polym Biomater. https://doi.org/10.1081/E-EBPP-120049908

    Article  Google Scholar 

  7. 7.

    Moghadamtousi SZ, AbdulKadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi KA (2014) Biomed Res Int. https://doi.org/10.1155/2014/186864

    Article  PubMed  Google Scholar 

  8. 8.

    Hewlings SJ, Kalman DS (2017) Foods 6:92. https://doi.org/10.3390/foods6100092

    CAS  Article  PubMed Central  Google Scholar 

  9. 9.

    Dhivya R, Ranjani J, Rajendhran J, Mayandi J, Annaraj J (2018) Mater Sci Eng C 82:182–189

    CAS  Article  Google Scholar 

  10. 10.

    Paz E, Ballesteros Y, Abenojar J, del Real JC, Dunne NJ (2019) Materials 12:3146

    CAS  Article  Google Scholar 

  11. 11.

    Wang C, Yu B, Fana Y, Ormsby RW, McCarthy HO, Dunne N, Li X (2019) Mater Sci Eng C 103:109823

    CAS  Article  Google Scholar 

  12. 12.

    Widmer AF (2001) Clin Infect Dis 33(2):94–106

    Article  Google Scholar 

  13. 13.

    Oliveira IR, Barbosa AM, Grancianinov KJS, Origo FD, Dos Santos KW, Leite PMSCM, Raniero LJ, Pandolfelli VC (2020) Ceram Int 46:14241–14251

    Article  Google Scholar 

  14. 14.

    Reis de Vasconcellos LM, Campores KL, Marinzeck de Alcântara Abdala J, Vieira MN, De Oliveira IR (2020) J Mater Sci 31:10

    Google Scholar 

  15. 15.

    Cousineau N, Mcdowell I, Hotz S, Hébert P (2015) Med Care 41:110–118. https://doi.org/10.1097/01.MLR.0000039832.32412.7D

    Article  Google Scholar 

  16. 16.

    Nishio W, Denyer SP, Evans SL (2013) J Mech Behav Biomed Mater 32:76–88. https://doi.org/10.1016/j.jmbbm.2013.12.010

    CAS  Article  Google Scholar 

  17. 17.

    Chen L, Tang Y, Zhao K, Liu J, Bai H, Wu Z (2020) Colloids Surf B 189:11084

    Article  Google Scholar 

  18. 18.

    Phakatkar AH, Shirdar MR, Qi M, Taheri MM, Narayanan S, Foroozan T, Sharifi-Asl S, Huang Z, Agrawal M, Lu YP, Shahbazian-Yassar R, Shokuhfar T (2020) Mater Sci Eng C 109:110497

    CAS  Article  Google Scholar 

  19. 19.

    Slane J, Vivanco J, Rose W, Ploeg HL, Squire M (2015) Mater Sci Eng C 48:188–196. https://doi.org/10.1016/j.msec.2014.11.068

    CAS  Article  Google Scholar 

  20. 20.

    Bertazzoni Minelli E, Della Bora T, Benini A (2011) Anaerobe 17:380–383. https://doi.org/10.1016/j.anaerobe.2011.03.013

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tavakoli M, Eil Bakhtiari SS, Karbasi S (2020) İnt J Biol Macromol 149:783–793

    Article  Google Scholar 

  22. 22.

    Dunne NJ, Hıll J, Mcafee P, Kırkpatrıck R, Patrıck S, Tunney M (2008) Proc Inst Mech Eng 222(3):355–365

    CAS  Article  Google Scholar 

  23. 23.

    Kühn KD (2014) Springer 291 p.

  24. 24.

    Sohrabnezhad Sh, Rassa M, Mohammadi Dahanesari E (2016) J Photochem Photobiol B 163:150–155

    CAS  Article  Google Scholar 

  25. 25.

    Baysal G, Çelik BY (2018) J Environ Sci Health. https://doi.org/10.1080/03601234.2018.1530546

    Article  Google Scholar 

  26. 26.

    Zhao F, Wan C, Bao X, Kandasubramanian B (2009) J Colloid Interface Sci 333:164–170

    CAS  Article  Google Scholar 

  27. 27.

    Baysal G, Doğan F (2020) J Biomater Sci Polym. https://doi.org/10.1080/09205063.2020.1743947

    Article  Google Scholar 

  28. 28.

    Ayfer B, Dizman B, Elasri MO, Mathias LJ, Avci D (2005) Des Monomers Polym 8(5):437–451

    CAS  Article  Google Scholar 

  29. 29.

    Tanga GP, Zenga JM, Gaoa SJ, Maa YX, Shia L, Li Y, Toob HP, Wang S (2003) Biomaterials 24:2351–2362

    Article  Google Scholar 

  30. 30.

    Carniato F, Fina A, Tabuani D, Boccaleri E (2008) Nanotechnology 19:475701

    Article  Google Scholar 

  31. 31.

    Philip P, Tomlal Jose E, Jacob K, Chacko KC, Philip PC (2019) Polym Testing 74:257–265

    CAS  Article  Google Scholar 

  32. 32.

    Silva NM, Fonsecaa JM, Feldhaus HK, Soares LS, Valencia GA, Maduro de Campos CE, DiLuccio M, Monteiro AR (2019) Food Hydrocolloids 97:105217

    Article  Google Scholar 

  33. 33.

    Kang T, Hua X, Liang P, Rao M, Wang Q, Quan C, Zhang C, Jiang Q (2016) Compos Sci Technol 123:232–240

    CAS  Article  Google Scholar 

  34. 34.

    Pan Y, Liu F, Xu D, Jiang X, Yu H, Zhu M (2013) Mater Int 23(1):89–93

    Google Scholar 

  35. 35.

    Radha G, Balakumar S, Venkatesan B, Vellaichamy E (2017) Mater Sci Eng C 7:164–172

    Google Scholar 

  36. 36.

    Ravindar Reddy M, Subrahmanyam AR, Maheshwar Reddy M, Siva Kumarc J, Kamalaker V, Jaipal Reddy M (2016) Mater Today 3:3713–3718

    Google Scholar 

  37. 37.

    Radha G, Balakumar S, Venkatesan B, Vellaichamy E (2017) Mater Sci Eng C 75:221–228

    CAS  Article  Google Scholar 

  38. 38.

    Yaman N, Ozdogan E, Seventekin N, Ayhan H (2009) Appl Surf Sci 255:6764–6770

    CAS  Article  Google Scholar 

  39. 39.

    Bong Kim S, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, Kima IA, Shin JW (2004) Biomaterials 25:5715–5723

    Article  Google Scholar 

  40. 40.

    Spasojevic P, Zrilic M, Panic V, Stamenkovic D, Seslija S, Velickovic S (2015) Int J Polym Sci. https://doi.org/10.1155/2015/561012

    Article  Google Scholar 

  41. 41.

    Feng P, Kong Y, Yu L, Li Y, Gao C, Peng S, Pan H, Zhao Z, Shuai C (2019) Appl Mater Today 17:216–226

    Article  Google Scholar 

  42. 42.

    Shuai C, Yu L, Fenga P, Gao C, Peng S (2020) Colloids Surf B 193:111083

    CAS  Article  Google Scholar 

  43. 43.

    Panawala L (2017) Epedıaa 3:1–13

    Google Scholar 

  44. 44.

    Sağlam D, Şeker E (2016) Kocatepe Vet J 9(2):105–113

    Article  Google Scholar 

  45. 45.

    Pulingam T, Thong KL, Ali MdE, Appaturi JN, Dinshaw IJ, Ong ZY, Leo BF (2019) Colloids Surf B 181:6–15

    CAS  Article  Google Scholar 

  46. 46.

    Marinescu C, Sofronia A, Anghel EM, Baies R, Constantin D, Seciu AM, Gingu O, Tanasescu S (2019) Arab J Chemy 12:857–867

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was carried out with the support of Istanbul Aydin University Scientific Research Project. Project number: 27/06/2018-10

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gülay Baysal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eren, T., Baysal, G. & Doğan, F. Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01787-8

Download citation

Keywords

  • The biocidal activity
  • The antibacterial properties
  • Bone cement
  • Biocompatibility analysis
  • Curcumin
  • Biopolimers