Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films

Abstract

This work sought to formulate, analyze, model, and optimize Arracacha (Arracacha xanthorrhiza) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three levels (starch 3–4%; glycerol 0.75–1.25%; chitosan 1–2%) to determine the individual and interactive effects of these parameters on the mechanical properties (tensile TS, and elongation at break, %E) and barrier properties (water vapor permeability, WVP) of the films. The results were analyzed by using the Pareto analysis of variance (ANOVA). The descriptive response surfaces were obtained and second-order polynomial models were developed for each response evaluated, which showed good fit to the experimental data with high determination coefficient (R2 > 0.95), finding relation between the experimental and predicted values. The optimal film formulation, according to the desirability function by Derringer, with the aim of minimizing the SS and WVP values and maximizing the %E values, was obtained with that containing 4% starch, 1.11% glycerol, and 2% chitosan, presenting low stress strain and permeability and high flexibility, conditions favorable for the desired application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. 1.

    Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    CAS  Article  Google Scholar 

  2. 2.

    Galindez A, Daza LD, Homez-Jara A, Eim VS, Váquiro HA (2019) Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohyd Polym 215:143–150

    CAS  Article  Google Scholar 

  3. 3.

    Otoni CG, Avena-Bustillos RJ, Azeredo HMC, Lorevice MV et al (2017) Recent advances on edible films based on fruits and vegetables—a review. Compr Rev Food Sci Food Saf 16:1151–1169

    Article  Google Scholar 

  4. 4.

    Restrepo AE, Rojas JD, García OR, Sánchez LT et al (2018) Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Sci Technol Int 24:705–712

    CAS  Article  Google Scholar 

  5. 5.

    Pinzon MI, Garcia OR, Villa CC (2018) The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J Sci Food Agric 98:4042–4049

    CAS  Article  Google Scholar 

  6. 6.

    Thakur R, Pristijono P, Scarlett CJ, Bowyer M et al (2019) Starch-based films: major factors affecting their properties. Int J Biol Macromol 132:1079–1089

    CAS  Article  Google Scholar 

  7. 7.

    Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68:136–148

    Article  Google Scholar 

  8. 8.

    Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1:1117749

    Google Scholar 

  9. 9.

    Zhang Y, Liu Z, Han J (2008) In: Chiellini E (ed) Environmentally Compatible Food Packaging. Woodhead Publishing, Sawston, pp 108–136

    Google Scholar 

  10. 10.

    Shah U, Naqash F, Gani A, Masoodi FA (2016) Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf 15:568–580

    CAS  Article  Google Scholar 

  11. 11.

    Basiak E, Lenart A, Debeaufort F (2017) Effect of starch type on the physico-chemical properties of edible films. Int J Biol Macromol 98:348–356

    CAS  Article  Google Scholar 

  12. 12.

    Castanha N, Villar J, Matta Junior MDD, Anjos CBPD, Augusto PED (2018) Structure and properties of starches from Arracacha (Arracacha xanthorrhiza) roots. In J Biol Macromol 117:1029–1038

    CAS  Article  Google Scholar 

  13. 13.

    Moraes J, Branzani RS, Franco CML (2014) Behavior of Peruvian carrot (Arracacha xanthorrhiza) and cassava (Manihot esculenta) starches subjected to heat-moisture treatment. Starch Stärke 66:645–654

    CAS  Article  Google Scholar 

  14. 14.

    Torres FG, Troncoso OP, Díaz DA, Amaya E (2011) Morphological and thermal characterization of native starches from Andean crops. Starch Stärke 63:381–389

    CAS  Article  Google Scholar 

  15. 15.

    Homez-Jara A, Daza LD, Aguirre DM, Muñoz JA et al (2018) Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Int J Biol Macromol 113:1233–1240

    CAS  Article  Google Scholar 

  16. 16.

    Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    CAS  Article  Google Scholar 

  17. 17.

    Durango AM, Soares NFF, Benevides S, Teixeira J et al (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Pack Technol Sci 19:55–59

    CAS  Article  Google Scholar 

  18. 18.

    Mathew S, Abraham TE (2008) Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids 22:826–835

    CAS  Article  Google Scholar 

  19. 19.

    Chillo S, Flores S, Mastromatteo M, Conte A et al (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88:159–168

    CAS  Article  Google Scholar 

  20. 20.

    Mei J, Guo Q, Wu Y, Li Y (2015) Evaluation of chitosan-starch-based edible coating to improve the shelf life of bod ljong cheese. J Food Prot 78:1327–1334

    CAS  Article  Google Scholar 

  21. 21.

    Liu M, Zhou Y, Zhang Y, Yu C, Cao S (2014) Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol. Int J Biol Macromol 70:340–346

    CAS  Article  Google Scholar 

  22. 22.

    de Aquino AB, Blank AF, Santana LC (2015) Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem 171:108–116

    Article  Google Scholar 

  23. 23.

    Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2009) Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol 20:438–447

    Article  Google Scholar 

  24. 24.

    Sánchez-Ortega I, García-Almendárez BE, Santos-López EM, Reyes-González LR, Regalado C (2016) Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids 52:906–913

    Article  Google Scholar 

  25. 25.

    Chiumarelli M, Hubinger MD (2014) Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids 38:20–27

    CAS  Article  Google Scholar 

  26. 26.

    Singh TP, Chatli MK, Sahoo J (2015) Development of chitosan based edible films: process optimization using response surface methodology. J Food Sci Technol 52:2530–2543

    CAS  Article  Google Scholar 

  27. 27.

    Thakur R, Saberi B, Pristijono P, Stathopoulos CE et al (2017) Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J Food Sci Technol 54:2270–2278

    CAS  Article  Google Scholar 

  28. 28.

    Azarifar M, Ghanbarzadeh B, Sowti Khiabani M, Akhondzadeh Basti A et al (2019) The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohyd Polym 208:457–468

    CAS  Article  Google Scholar 

  29. 29.

    Chandra Mohan C, Rakhavan KR, Radha Krishnan K, Babuskin S et al (2016) Development of predictive preservative model for shelf life parameters of beef using response surface methodology. LWT Food Sci Technol 72:239–250

    CAS  Article  Google Scholar 

  30. 30.

    Davidović S, Miljković M, Tomić M, Gordić M et al (2018) Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohyd Polym 184:207–213

    Article  Google Scholar 

  31. 31.

    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    CAS  Article  Google Scholar 

  32. 32.

    Pelissari FM, Andrade-Mahecha MM, Sobral PJDA, Menegalli FC (2013) Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT Food Sci Technol 52:1–11

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Vicerrectoria de Investigaciones from Universidad del Quindio for the financial support. They also want to thank Facultad de Ciencias Agropecuarias and Programa de Quimica.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Magda I. Pinzón or Cristian C. Villa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia, O.R., Pinzón, M.I. & Villa, C.C. Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01765-0

Download citation

Keywords

  • Biodegradable films
  • Arracacha starch
  • Response surface methodology
  • Box–behnken design
  • Desirability function