Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 10, pp 2131–2143 | Cite as

Toward Greener Polymeric Blends: Study of PBAT/Thermoplastic Whey Protein Isolate/Beeswax Blends

  • Marina Fernandes Cosate de AndradeEmail author
  • Mathias Strauss
  • Ana Rita Morales
Original paper
  • 134 Downloads

Abstract

This work evaluated the effects of partial substitution of PBAT by thermoplastic whey protein isolate (WPIT) with addition of beeswax through blends processing and their morphological, mechanical, structural, thermal and rheological properties. Whey protein isolate (WPI) was denatured at 90 °C, using glycerol as plasticizer, to be transformed in a thermoplastic material and subsequently blended with PBAT using a torque rheometer at 130 °C. Addition of 10 and 30% of WPIT in the PBAT matrix was investigated with and without beeswax. Blends were pressed as films with ~ 320 µm of thickness. Scanning electron microscopy (SEM) analysis of PBAT/WPIT blends films revealed the presence of domains. These domains are compounded of whey protein, while at the continuous phase a moderate degree of mixture between PBAT and WPIT was observed by Raman analyses. WPIT did not alter the degree of crystallinity and the glass-transition temperature (Tg) of the PBAT in the blends. Thermogravimetric curves of the blends showed decomposition stages related to WPIT and PBAT phases. Thermal stability of blends decreased in comparison to WPIT, which was associated to the cleavage of disulfide bonds of WPIT during processing and causes other kind of interaction between components. Besides, blends containing WPIT remained non-rigid polymers with Young’s modulus below 70 MPa. The tensile strength and elongation at break decreased due the presence of WPIT. Beeswax did not influence the thermal and mechanical properties explored in this study.

Keywords

PBAT Whey protein isolate Thermoplastic material Beeswax Polymer blends 

Notes

Acknowledgements

The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano/CNPEM) for the use of materials characterization (SEM, TG and DSC) and polymers processing facilities. National System of Laboratories for Nanotechnology (SisNANO/MCTI) is also acknowledged for its financial support in infrastructure and equipment at the LNNano. MFCA thanks CNPq (process number 163257/2015-9) for the fellowship. Ivanei Pinheiro, Mariane Pereira, Elizabeth Sanches, Renata Brandão, Mayara Calderaro, and Patrícia Souza are thanked for they support on materials analyses and valuable discussions.

Supplementary material

10924_2019_1502_MOESM1_ESM.docx (1008 kb)
Supplementary material 1 (DOCX 1007 kb)

References

  1. 1.
    Mei LHI (2016) Bioplásticos: Biodegradáveis & Biobased—definições, fontes e aplicações. Editora da UNICAMP, CampinasGoogle Scholar
  2. 2.
    Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K (2012) Int J Polym Sci 1:7Google Scholar
  3. 3.
    Chen F, Zhang J (2009) Polymer 3770:3777Google Scholar
  4. 4.
    Pervaiz M, Oakley P, Sain M (2014) Int J Compos Mater 204:212Google Scholar
  5. 5.
    Muthuraj R, Misra M, Mohanty AK (2018) J Appl Polym Sci 1:35Google Scholar
  6. 6.
    Cinelli P, Schmid M, Bugnicourt E, Wildner J, Bazzichi A, Anguillesi I, Lazzeri A (2014) Polym Degrad Stab 151:157Google Scholar
  7. 7.
    Schmid M, Hammann F, Winkler H (2013) Packag Technol Sci 521:533Google Scholar
  8. 8.
    Hernandez-Izquierdo VM, Krochta JM (2009) Packag Technol Sci 255:260Google Scholar
  9. 9.
    Hernandez-Izquierdo VM, Reid DS, Mchugh TH, DE Berrios JJ, Krochta JM (2008) J Food Sci 169:175Google Scholar
  10. 10.
    Schmid M, Pröls S, Kainz DM, Hammann F, Grupa Uwe (2016) Prog Org Coat 161:172Google Scholar
  11. 11.
    Schmid M, Muller K, Sangerlaub S, Stabler A, Starck V, Ecker F, Noller K (2014) J Appl Polym Sci 1:9Google Scholar
  12. 12.
    Bier JM, Verbeek CJR, Lay MC (2014) Macromol Mater Eng 524:539Google Scholar
  13. 13.
    Verbeek CJR, van den Berg LE (2010) Macromol Mater Eng 10:21Google Scholar
  14. 14.
    Utracki LA (2002) Polymer blends handbook. Kluwer Academic Publishers, DordrechtGoogle Scholar
  15. 15.
    Passador FR, Pessan LA, Rodolfo JRA (2006) Polímeros 16:174–181CrossRefGoogle Scholar
  16. 16.
    Huang H-X (2011) In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems. John Wiley & Sons Ltd, New JerseyGoogle Scholar
  17. 17.
    Ajji A (2002) In: Utracki LA (ed) Polymer blends handbook. Kluwer Academic Publishers, DordrechtGoogle Scholar
  18. 18.
    Li H, Hu G-H (2001) J Polym Sci 601:610Google Scholar
  19. 19.
    Lin B, Sundararaj U, Mighri F, Huneault MA (2003) Polym Eng Sci 891:904Google Scholar
  20. 20.
    Smith MJ, Verbeek CJR (2018) Adv Polym Technol 2354:2366Google Scholar
  21. 21.
    Schmid M, Herbst C, Müller K, Stäbler A, Schlemmer D, Coltelli M-B, Lazzeri A (2016) Polym-Plast Technol 510:517Google Scholar
  22. 22.
    Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC, Pereira CFG (2017) Carbohydr Polym 971:980Google Scholar
  23. 23.
    Schmid M, Muller K, Sangerlaub S, Stabler A, Starck V, Ecker F, Noller K (2014) J Appl Polym Sci 1:9Google Scholar
  24. 24.
    Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer W-D, Müller R-J (2001) Chemosphere 289:299Google Scholar
  25. 25.
    Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) J Polym Environ 393:401Google Scholar
  26. 26.
    Li G, Shankar S, Rhim J-W, Oh B-Y (2015) Food Sci Biotechnol 1679:1685Google Scholar
  27. 27.
    Mondal D, Bhowmick B, Mollick MMR, Maity D, Saha NR, Rangarajan V, Rana D, Sen R, Chattopadhyay D (2014) J Appl Polym Sci 1:9Google Scholar
  28. 28.
    Herrera R, Franco L, Rodriguez-Galan A, Puiggali J (2002) J Polym Sci A 1(4141):4157Google Scholar
  29. 29.
    Chen F, Zhang J (2010) Polymer 1812:1819Google Scholar
  30. 30.
    Guo G, Zhang C, Du Z, Zou W, Tian H, Xiang A, Li H (2015) Ind Crop Prod 731:736Google Scholar
  31. 31.
    McHugh TH, Avena-Bustillos FL, Krochta JM (1993) J Food Sci 899:903Google Scholar
  32. 32.
    Nelson DL, Cox M (2002) Lehninger—Princípios de Bioquímica. Sarvier, São PauloGoogle Scholar
  33. 33.
    Lim JH, Kim JA, Ko JA, Park HJ (2015) J Food Sci 2471:2477Google Scholar
  34. 34.
    BASF (2013) Product Information—ecoflex® F Blend C1200—Biodegradable polyester for compostable film 1:3Google Scholar
  35. 35.
    Krevelen DWV, Nijenhuis KT (2009) Properties of polymers their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Mesic B, Lestelius M, Engström G (2006) Packag Technol Sci 61:70Google Scholar
  37. 37.
    Wu S (1971) J Polym Sci 19:30Google Scholar
  38. 38.
    American Society for Testing and Material ASTM E2550-11 (2011) Standard Test Method for Thermal Stability by ThermogravimetryGoogle Scholar
  39. 39.
    American Society for Testing and Material ASTM D882-12 (2012) Standard Test Method for Tensile Properties of Thin Plastic SheetingGoogle Scholar
  40. 40.
    Coleman MM, Serman CJ, Bhagwagar DE, Painter PC (1990) Polymer 1187:1203Google Scholar
  41. 41.
    Corradini E, Carvalho AJF, Curvelo AAS, Agnelli JAM, Mattoso LHC (2007) Mater Res 227:231Google Scholar
  42. 42.
    Almeida TG, Neto JES, Costa ARM, Silva AS, Carvalho LH, Canedo EL (2016) Polym Test 204:211Google Scholar
  43. 43.
    Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Polymer 6825:6831Google Scholar
  44. 44.
    Bretas RES, D´Ávila MA (2005) Reologia de Polímeros Fundidos EDUFScar. São CarlosGoogle Scholar
  45. 45.
    Bigg DM (1983) Polym Eng Sci 206:210Google Scholar
  46. 46.
    Favis BD, Chalifoux JP (1987) Polym Eng Sci 1591:1600Google Scholar
  47. 47.
    Everaert V, Aerts L, Groeninckx G (1999) Polymer 6627:6644Google Scholar
  48. 48.
    Ghodgaonkar PG, Sundararaj U (1996) Polym Eng Sci 1656:1665Google Scholar
  49. 49.
    Smith MJ, Verbeek CJR (2018) Adv Polym Technol 1886:1896Google Scholar
  50. 50.
    Guerrica-Echevarrıa G, Eguiazábal JI, Nazábal J (2000) Polym Test 849:854Google Scholar
  51. 51.
    Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X (2011) Food Hydrocoll 1098:1104Google Scholar
  52. 52.
    Ngarize S, Adams A, Howell NK (2004) Food Hydrocoll 49:59Google Scholar
  53. 53.
    Wang Q, He L, Labuza TP, Ismail B (2013) Food Chem 313:319Google Scholar
  54. 54.
    Blanpain-Avet P, Hédoux A, Guinet Y, Paccou L, Petit J, Six T, Delaplace G (2012) J Food Eng 86:94Google Scholar
  55. 55.
    Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Food Hydrocoll 110:122Google Scholar
  56. 56.
    Nobrega MM, Olivato JB, Müller CMO, Yamashita F (2012) Polímeros 475:480Google Scholar
  57. 57.
    Cai Y, Lv DJ, Feng J, Liu Y, Wang Z, Zhao M, Shi R (2017) Spectrosc Lett 280:284Google Scholar
  58. 58.
    Lin-Vien D et al (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, BostonGoogle Scholar
  59. 59.
    Visschers RW, Jongh HHJ (2005) Biotechnol Adv 75:80Google Scholar
  60. 60.
    Canevarolo SV (2004) Técnicas de Caracterização de Polímeros. Editora Artliber, São PauloGoogle Scholar
  61. 61.
    Barreto PLM, Pires ATN, Soldi V (2003) Polym Degrad Stab 147:152Google Scholar
  62. 62.
    Sangroniz A, Gonzalez A, Martin L, Irusta L, Iriarte M, Etxeberria A (2018) Polym Degrad Stab 25:35Google Scholar
  63. 63.
    American Society for Testing and Material ASTM D883-12 (2012) Standard Terminology Relating to PlasticsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.DEMBio, School of Chemical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Brazilian Nanotechnology National Laboratory (LNNano)National Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  3. 3.Centre of Natural and Human SciencesFederal University of ABCSanto AndréBrazil

Personalised recommendations