Skip to main content
Log in

Wholly Heterocycles-Based Polyamide–Sulfide Containing Pyridine and Thiazole Rings: A Super-Adsorbent Polymer for Lead Removal

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Wholly heterocycles-based polyamide-sulfide (PAS) containing pyridine and thiazole rings with thioether linkage was synthesized and used as a novel adsorbent for lead ion removal from water. The polymer adsorbent was fully characterized via FTIR, NMR and scanning electron microscopy (SEM). The thermal properties of the synthesized polyamide were also studied by thermogravimetric analysis and the outcome showed that the polymer has a good to moderate thermal stability. The SEM was used to investigate the morphology of the wholly heterocycles-based polyamide and the outcomes displayed a porous and globular-like morphology, which guarantee effective metal adsorption. Pb(II) ion removal capacity of the synthesized polymer was studied by varying the contact time and the adsorbent concentration. The maximum removal of Pb(II) was obtained as 99%. Equilibrium behavior and kinetic of the adsorption were also investigated using prevalent isotherm and kinetic models. The adsorption capacity was obtained to be around 714 mg g−1. The Langmuir isotherm and the pseudo-second order kinetic model suggested superior agreement with the equilibrium and kinetic adsorption data, respectively. Generally, the results of this research demonstrated that the synthesized polymer is a super-adsorbent for heavy metal removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Narwade VN, Khairnar RS, Kokol V (2018) In Situ synthesized hydroxyapatite—cellulose nanofibrils as biosorbents for heavy metal ions removal. J Polym Environ 26:2130

    Article  CAS  Google Scholar 

  2. Mohsen-Nia M, Montazeri P, Modarress H (2007) Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217:276

    Article  CAS  Google Scholar 

  3. Ismail AA, Mohamed R, Ibrahim I, Kini G, Koopman B (2010) Synthesis, optimization and characterization of zeolite A and its ion-exchange properties. Colloid Surf A 366:80

    Article  CAS  Google Scholar 

  4. Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais J-F (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581

    Article  CAS  PubMed  Google Scholar 

  5. Deng Y, Englehardt JD (2007) Electrochemical oxidation for landfill leachate treatment. Waste Manag 27:380

    Article  CAS  PubMed  Google Scholar 

  6. Salehi E, Madaeni SS, Samiei Raad S, Shirazi Manesh AA, Vatanpour V (2011) Thermodynamically comparison of Na+ and Ca2+ adsorption onto PVD and NF45 membranes. Desalination 281:312

    Article  CAS  Google Scholar 

  7. Hassanpour S, Taghizadeh M, Yamini Y (2018) Magnetic Cr(VI) ion imprinted polymer for the fast selective adsorption of Cr(VI) from aqueous solution. J Polym Environ 26:101

    Article  CAS  Google Scholar 

  8. Salehi E, Madaeni SS, Vatanpour V (2012) Thermodynamic investigation and mathematical modeling of ion-imprinted membrane adsorption. J Membr Sci 389:334

    Article  CAS  Google Scholar 

  9. Ozbas Z, Demir S, Kasgoz H (2018) Adsorption studies of PVA based thermosensitive polymers in heavy metal removal. J Polym Environ 26:2096

    Article  CAS  Google Scholar 

  10. Feng D, Bai B, Wang H, Suo Y (2018) Novel fabrication of PAA/PVA/yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes. J Polym Environ 26:567

    Article  CAS  Google Scholar 

  11. Yuan X, Meng Y, Zeng G, Fang Y, Shi J (2008) Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloid Surf A 317:256

    Article  CAS  Google Scholar 

  12. Pan B, Pan B, Zhang W, Lv L, Zhang Q, Zheng S (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19

    Article  CAS  Google Scholar 

  13. Mishra SP, Singh VK, Tiwari D (1996) Radiotracer technique in adsorption study: part XIV. Efficient removal of mercury from aqueous solutions by hydrous zirconium oxide. Appl Rad Isotop 47:15

    Article  CAS  Google Scholar 

  14. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309

    Article  CAS  PubMed  Google Scholar 

  15. Celis R, Hermosin MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34:4593

    Article  CAS  Google Scholar 

  16. Ishibashi N, Yamamoto K, Wakisaka H, Kawahara Y (2014) Influence of the hydrothermal pre-treatments on the adsorption characteristics of activated carbons from woods. J Polym Environ 22:267

    Article  CAS  Google Scholar 

  17. Nagarale R, Gohil G, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interface Sci 119:97

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Lv P, Zou H, Li Y, Li X, Liao Y (2016) Synthesis of poly(2-aminothiazole) for selective removal of Hg(II) in aqueous solutions. Ind Eng Chem Res 55:4911

    Article  CAS  Google Scholar 

  19. Xiong C, Wang S, Zhang L, Li Y, Zhou Y, Peng J (2018) Preparation of 2-aminothiazole-functionalized poly (glycidyl methacrylate) microspheres and their excellent gold ion adsorption properties. Polymers 10:159

    Article  CAS  PubMed Central  Google Scholar 

  20. Zhuang H, Yang L, Xu J, Li F, Zhang Z, Lin H, Long J, Wang X (2015) Robust photocatalytic H2O2 production by octahedral Cd3(C3N3S3)2 coordination polymer under visible light. Sci Rep 5:16947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matlock MM, Henke KR, Atwood DA, Robertson D (2001) Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res 35:3649

    Article  CAS  PubMed  Google Scholar 

  22. Kirupha SD, Murugesan A, Vidhyadevi T, Baskaralingam P, Sivanesan S, Ravikumar L (2012) Novel polymeric adsorbents bearing amide, pyridyl, azomethine and thiourea binding sites for the removal of Cu(II) and Pb(II) ions from aqueous solution. Sep Sci Technol 48:254

    Article  CAS  Google Scholar 

  23. Rezania J, Shockravi A, Ehsani M, Vatanpour V (2018) Novel polyimides based on diamine containing thiazole units with thioether linkage and pyridine as pendent group: synthesis and characterization. High Perf Polym 30:840

    Article  CAS  Google Scholar 

  24. Javadi A, Shockravi A, Kamali M, Rafieimanesh A, Malek AM (2013) Solution processable polyamides containing thiazole units and thioether linkages with high optical transparency, high refractive index, and low birefringence. J Polym Sci A 51:3505

    Article  CAS  Google Scholar 

  25. Salehi E, Afshar S, Zarezadeh Mehrizi M, Chehrei A, Asadi M (2018) Direct reduction of blood serum cholesterol using Thymus vulgaris L.: Preliminary biosorption study. Process Biochem 67:155

    Article  CAS  Google Scholar 

  26. Salehi E, Gavari N, Chehrei A, Amani S, Amani N, Zaghi K (2019) Efficient separation of triglyceride from blood serum using Cinnamon as a novel biosorbent: adsorption thermodynamics, kinetics, isothermal and process optimization using response surface methodology. Process Biochem 77:122

    Article  CAS  Google Scholar 

  27. Ahmed R, Yamin T, Ansari MS, Hasany SM (2006) Sorption behaviour of lead (II) ions from aqueous solution onto Haro river sand. Ads Sci Technol 24:475

    Article  CAS  Google Scholar 

  28. Jaycock MJ, Parfitt GD (1981) Chemistry of Interfaces. Ellis Horwood Ltd, Onichester

    Google Scholar 

  29. Ruthven DW (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  30. Salehi E, Madaeni SS, Rajabi L, Vatanpour V, Derakhshan A, Zinadini S, Ghorabi S, Ahmadi Monfared H (2012) Novel chitosan/poly (vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu (II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309

    Article  CAS  Google Scholar 

  31. Salehi E, Madaeni SS, Rajabi L, Derakhshan A, Daraei S, Vatanpour V (2013) Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chem Eng J 215–216:791

    Article  CAS  Google Scholar 

  32. Tianwei T, Xiaojing H, Weixia D (2001) Adsorption behaviour of metal ions on imprinted chitosan resin. J Chem Technol Biotechnol 76:191

    Article  Google Scholar 

  33. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc America J 44:265

    Article  CAS  Google Scholar 

  34. Liu Y, Liu Z, Gao J, Dai J, Han J, Wang Y, Xie J, Yan Y (2011) Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J Hazard Mater 186:197

    Article  CAS  PubMed  Google Scholar 

  35. Huang K, Li B, Zhou F, Mei S, Zhou Y, Jing T (2016) Selective solid-phase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers. Anal Chem 88:6820

    Article  CAS  PubMed  Google Scholar 

  36. Elsherbiny AS, El-Hefnawy ME, Gemeay AH (2018) Adsorption efficiency of polyaspartate-montmorillonite composite towards the removal of Pb(II) and Cd(II) from aqueous solution. J Polym Environ 26:411

    Article  CAS  Google Scholar 

  37. Koushkbaghi S, Zakialamdari A, Pishnamazi M, Ramandi HF, Aliabadi M, Irani M (2018) Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem Eng J 337:169

    Article  CAS  Google Scholar 

  38. Facchi DP, Cazetta AL, Canesin EA, Almeida VC, Bonafé EG, Kipper MJ, Martins AF (2018) New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem Eng J 337:595

    Article  CAS  Google Scholar 

  39. Maity J, SRay K (2018) Chitosan based nano composite adsorbent—Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water. Carbohydr Polym 182:159

    Article  CAS  PubMed  Google Scholar 

  40. Moradi G, Dabirian F, Mohammadi P, Rajabi L, Babaei M, Shiri N (2018) Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: characterization and process optimization by response surface methodology. Chem Eng Res Design 129:182

    Article  CAS  Google Scholar 

  41. Tabesh S, Davar F, Loghman-Estarki MR (2018) Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloys Compd 730:441

    Article  CAS  Google Scholar 

  42. Zhang Z, Zhang X, Niu D, Li Y, Shi J (2017) Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers. J Hazard Mater 328:160

    Article  CAS  PubMed  Google Scholar 

  43. Kong D, Qiao N, Wang N, Wang Z, Wang Q, Zhou Z, Ren Z (2018) Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution. Phys Chem Chem Phys 20:12870

    Article  CAS  PubMed  Google Scholar 

  44. Nyairo W, Ramazan Eker Y, Chrispin K, Akin I, Bingol H, Tor A, Mokono Ongeri D (2018) Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep Sci Technol 53:1498

    Article  CAS  Google Scholar 

  45. Shahabuddin S, Tashakori C, Kamboh MA, Sotoudehnia Korrani Z, Saidur R, Rashidi Nodeh H, Bidhendi ME (2018) Kinetic and equilibrium adsorption of lead from water using magnetic metformin-substituted SBA-15. Environ Sci Water Res Technol 4:549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Kharazmi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Vatanpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Vatanpour, V., Salehi, E. et al. Wholly Heterocycles-Based Polyamide–Sulfide Containing Pyridine and Thiazole Rings: A Super-Adsorbent Polymer for Lead Removal. J Polym Environ 27, 1790–1800 (2019). https://doi.org/10.1007/s10924-019-01473-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01473-4

Keywords

Navigation