Skip to main content
Log in

The Flotation by Selected Depressants as an Efficient Technique for Separation of a Mixed Acrylonitrile Butadiene Styrene, Polycarbonate and Polyoxymethyleneplastics in Waste Streams

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The virgin acrylonitrile butadiene styrene (ABS), polycarbonate (PC) and polyoxy methylene (POM) available in a plastic mix were separated from each other by a flotation technique with the aid of several depressants. Also, a Design-Expert® statistical software was used to predict plastics flotation using input data including conditioning time, flotation tank temperature and pH and depressants concentration. It revealed that the flotation technique was effective for separation of studied plastics by selected depressants. Understanding the adsorption–desorption phenomena and effective parameters on this process was crucial to explain the activity and selectivity of a depressant on a plastic surface. The increasing conditioning time up to 15 min had adverse effect on the floatability of the all studied plastics conditioned with tannic acid (TA). TA and methyl isobutyl carbinol (MIBC) had not any effect on floatability of PC and POM in all studied depressant concentrations. The flotation of ABS reached to 85% for flotation tank pH of 6.5 with 15 min depressant conditioning at 35 °C as flotation tank temperature. A complicate phenomenon involved and predominated in flotation of studied plastics. Proposed equations by Design-Expert® predicted close plastic flotation values when compared with corresponding experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Thompson RC, Moore CJ, VomSaal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos T R Soc B 364:2153–2166

    Article  CAS  Google Scholar 

  2. Gu F, Guo J, Zhang W, Summers PA, Hall P (2017) From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci Total Environ 601–602:1192–1207

    Article  CAS  PubMed  Google Scholar 

  3. Negari MS, Ostad Movahed S, Ahmadpour A (2018) Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique. Sep Purif Technol 194:368–376

    Article  CAS  Google Scholar 

  4. Silveira AVM, Cella M, Tanabe EH, Bertuol DA (2018) Application of triboelectrostatic separation in the recycling of plastic wastes. Process Saf Environ 114:219–228

    Article  CAS  Google Scholar 

  5. Li J, Wu G, Xu Z (2015) Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag 35:36–41

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Li J, Xu Z (2013) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manag 33:585–597

    Article  PubMed  Google Scholar 

  7. Gent M (2009) Recycling of plastic waste by density separation: prospects for optimization. Waste Manag Res 27:175–187

    Article  PubMed  Google Scholar 

  8. Gent R, Malcolm Menendez M, Toraño J, Torno S (2011) Optimization of the recovery of plastics for recycling by density media separation cyclones. Resour Conserv Recycl 55:472–482

    Article  Google Scholar 

  9. Lee JJS, Mo JPT, Wu DY (2012) Polymer recovery from auto shredder residue by projectile separation method. Sustainability-Basel 4:643–655

    Article  Google Scholar 

  10. Zhao Y, Lv X, Yang W, Ni H (2017) Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste. Waste Manag 69:393–399

    Article  CAS  PubMed  Google Scholar 

  11. Pappa G et al (2001) The selective dissolution/precipitation technique for polymer recycling: a pilot unit application. Resour Conserv Recycl 34:33–44

    Article  Google Scholar 

  12. Weeden GS, Soepriatna NH, Wang NL (2015) Method for efficient recovery of high-purity polycarbonates from electronic waste. Environ Sci Technol 49:2425–2433

    Article  CAS  PubMed  Google Scholar 

  13. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B 115:409–422

    Article  CAS  Google Scholar 

  14. Deiringer G, Edelmann G, Rauxloh B (1993) U.S.Patent 5248041

  15. Gu GH, Hu YH, Qiu GZ, Wang H, Wang DZ (2002) Potential control flotation of galena in strong alkaline media. J Cent South Univ Technol 9:16–20

    Article  CAS  Google Scholar 

  16. Izumi S, Tanaka H (1975) Method for separation of mixture of plastics, US

  17. Burat F, Güney A, OlgaçKangal M (2009) Selective separation of virgin and postconsumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813

    Article  CAS  PubMed  Google Scholar 

  18. Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252

    Article  CAS  Google Scholar 

  19. Kangal MO (2010) Selective flotation technique for separation of PET and HDPE used in drinking water bottles. Min Proc Ext Met Rev 31:214–223

    Article  CAS  Google Scholar 

  20. Basařová P, Bartovská L, Kořínek K, Horn D (2005) The influence of flotation agent concentration on the wettability and flotability of polystyrene. J. Colloid Interf Sci 286:333–338

    Article  CAS  Google Scholar 

  21. Yuce AE, Kilic M (2015) separation of PVC/PET mixture from plastic wastes using column flotation technique. J Environ Prot Ecol 16:705–715

    CAS  Google Scholar 

  22. Pascoe RD (2005) The use of selective depressants for the separation of ABS and 65 HIPS by froth flotation. Miner Eng 18:233–237

    Article  CAS  Google Scholar 

  23. Yenial U, Burat F (2013) Separation of PET and PVC by flotation technique without using alkaline treatment. Min Proc Ext Met Rev 34:412–421

    Article  CAS  Google Scholar 

  24. Güney A, Özdilek C, Kangal MO, Burat F (2015) Flotation characterization of PET and PVC in the presence of different plasticizers. Sep Purif Technol 151:47–56

    Article  CAS  Google Scholar 

  25. Guo J, Li X, Guo Y, Ruan J, Qiao Q, Zhang J, Bi Y, Li F (2016) Research on flotation technique of separating pet from plastic packaging wastes. Proc Environ Sci 31:178–184

    Article  CAS  Google Scholar 

  26. Beckman EJ (1992) Separation of physically co-mingled plastics using a supercritical fluid to facilitate recycling, US

  27. Pascoe RD, Connell BO (2003) Development of a method for separation of PVC and PET using flame treatment and flotation. Miner Eng 16:1205–1212

    Article  CAS  Google Scholar 

  28. Wang C, Wang H, Wu B, Liu Q (2014) Boiling treatment of ABS and PS plastics for flotation separation. Waste Manag 34:1206–1210

    Article  CAS  PubMed  Google Scholar 

  29. Pongstabodee S, Kunachitpimol N, Damronglerd S (2008) Combination of threestage sink–float method and selective flotation technique for separation of 67 mixed post-consumer plastic waste. Waste Manag 28:475–483

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Zhang C, Hankett JM, Chen Z (2013) Molecular surface structural changes of plasticized PVC materials after plasma treatment. Langmuir 29:4008–4018

    Article  CAS  PubMed  Google Scholar 

  31. Qureshi A, Shah S, Pelagade S, Singh NL, Mukherjee Tripathi SA, Shripathi UPDA (2010) Surface modification of polycarbonate by plasma treatment. J Phys 208:1–6

    Google Scholar 

  32. Bakker EJ, Rem PC, Fraunholcz N (2009) Upgrading mixed polyolefin waste with magnetic density separation. Waste Manag 29:1712–1717

    Article  CAS  PubMed  Google Scholar 

  33. Vesel A, Mozetic M (2012) Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86:634–637

    Article  CAS  Google Scholar 

  34. Wang C, Wang H, Liu Q, Fu J, Liu Y (2014) Separation of polycarbonate and acrylonitrile–butadiene–styrene waste plastics by froth flotation combined with ammonia pretreatment. Waste Manag 34:2656–2661

    Article  CAS  PubMed  Google Scholar 

  35. Wang C, Wang H, Fu J, Zhang L, Luo C, Liu Y (2015) Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with 68 surface modification for recycling. Waste Manag 45:112–117

    Article  CAS  PubMed  Google Scholar 

  36. Nagy M, Skvarla J, Sisol M (2011) A possibility of using the flotation process to separate plastics. Ann Fac Eng Hunedoara 9:275

    CAS  Google Scholar 

  37. Mallampati SR, HoLee B, Mitoma Y, Simion C (2017) Heterogeneous nano-Fe/Ca/CaO catalytic ozonation for selective surface hydrophilization of plastics containing brominated and chlorinated flame retardants (B/CFRs): separation from automobile shredder residue by froth flotation. Environ Sci Pollut R 24:4469–4479

    Article  CAS  Google Scholar 

  38. Mallampati R, Lee C, Thanh Truc NT, Lee B (2015) Hazardous PVC plastics separation from ASR by froth flotation after microwave assisted surface modification. Int Conf Adv Environ Res 87:680–749

    Google Scholar 

  39. Wang H, Wang J, Zou Q, Liu W, Wang C, Huang W (2018) Surface treatment using potassium ferrate for separation of polycarbonate and polystyrene waste plastics by froth flotation. Appl Surf Sci 448:219–229

    Article  CAS  Google Scholar 

  40. Wang JC, Wang H (2017) Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures. Sep Purif Technol 187:415–425

    Article  CAS  Google Scholar 

  41. IAPD Education Committee. “Amorphous and Semi-Crystalline Engineering Thermoplastics, Module 4”. Basic Plastics Education tutorials. International Association of Plastics Distributors. Archived from the original on 2 March 2012. Retrieved 13 June 2012

  42. Stat-Ease Handbook for Experimenters, Copyright © (2018) Stat-Ease, Inc. 2021 East Hennepin Ave, Suite 480 Minneapolis, MN 55413

  43. Chau TT, Bruckard WJ, Koh PTL, Nguyen AV (2009) A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interf 150:106–115

    Article  CAS  Google Scholar 

  44. Shen H, Forssberg E, Pugh RJ (2002) Selective flotation separation of plastics by chemical conditioning with methyl cellulose. Resour Conserv Recycl 35:229–241

    Article  Google Scholar 

  45. Zhao Y, Yang S, Wen H, Shen Z, Han F (2019) Adsorption behavior and selectivity mechanism of flotation reagents applied in ternary plastic mixtures. Waste Manag 87:565–576

    Article  CAS  PubMed  Google Scholar 

  46. Gregg GC, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic press, London

    Google Scholar 

  47. Masel IR (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  48. Endo S, Yuyama M, Takada H (2013) Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Mar Pollut Bull 74:125–131

    Article  CAS  PubMed  Google Scholar 

  49. Marsalek R, Pospisil J, Taraba B (2011) The influence of temperature on the adsorption of CTAB on coals. Colloid Surf A 383:80–85

    Article  CAS  Google Scholar 

  50. Hameed BH (2007) Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. Colloid Surf A 307:45–52

    Article  CAS  Google Scholar 

  51. Sharma P, Kaur R, Baskar Ch, Chung WJ (2010) Desalination 259:249–257

    Article  CAS  Google Scholar 

  52. Montgomery DC (2013) Design and analysis of experiments, 8th edn. Wiley, Danvers

    Google Scholar 

  53. Hu M, Shen H, Ye S, Wang Y, Zhang J, Lv S (2018) Facile preparation of a tetraethylenepentaminefunctionalizednano magnetic composite material and its adsorption mechanism to anions: competition or cooperation. RSC Adv 8:10686–10697

    Article  CAS  Google Scholar 

  54. Zhang Z, Zheng H (2009) Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. J Hazard Mater 172(2–3):1388–1393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the staffs of the AKAM company laboratory located in MarkazRoshd, the Ferdowsi University of Mashhad for their sincere cooperation. Approval no. 3/45811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ostad Movahed.

Ethics declarations

Conflict of interest

The authors declare that they have not any financial/commercial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davari, M.R., Ostad Movahed, S. The Flotation by Selected Depressants as an Efficient Technique for Separation of a Mixed Acrylonitrile Butadiene Styrene, Polycarbonate and Polyoxymethyleneplastics in Waste Streams. J Polym Environ 27, 1709–1720 (2019). https://doi.org/10.1007/s10924-019-01467-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01467-2

Keywords

Navigation