Skip to main content
Log in

Microfluidic Fabrication of Nanoparticles Based on Ethyl Acrylate-Functionalized Chitosan for Adsorption of Methylene Blue from Aqueous Solutions

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The adsorption of nanoparticle (NP)-based adsorbents especially those made of polymers to remove dyes as toxic substances from pollutants is yet remained as a critical issue. The objective of this work was to prepare microfluidic (MF) fabrication of NPs based on ethyl acrylate (EA)-functionalized chitosan (CS) for methylene blue (MB) dye removal from aqueous solutions. For this purpose, a series of experiments such as FTIR, SEM alongside DLS, and UV–vis spectrophotometry were carried out to investigate the physicochemical properties of the samples. The FTIR spectra showed that the amine (–NH2) and hydroxyl (–OH) groups on CS structure were replaced with EA, appropriately. The SEM and DLS results depicted that EA-functionalized CS NPs fabricated using MF technique had uniform shapes, and the diameters as small as 70 nm compared to those samples produced via bulk mixing (BM) method (~ 300 nm). Moreover, the surface charge of MF-assisted CS NPs after functionalization exhibited the lower zeta potential value (~ + 11) than that of samples based on BM (~ + 14) due to occurring the laminar flow through the micro-channels embedded in the MF chip, leading to an increase in the MB adsorption. Subsequently, at the optimized amounts of the dye concentration (89.12 mg L−1), the adsorbent concentration (1.38 g L−1), and pH (10.58) by means of Box-Behnken design (BBD) method, the maximum percentage of MB removal by the use of MF-fabricated EA-functionalized CS NPs was 98.4%. By fitting the obtained adsorption data to the isotherm models such as Lagmuir, Freundlich, and Temkin, it has been found that the adsorption mechanism followed the Langmuir model (maximum capacity of the adsorption 384.61 mg/g), which assumed a monolayer coverage of MB molecules as adsorbates over a homogeneous adsorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77(2):415–426

    Article  CAS  Google Scholar 

  2. Fideles RA, Ferreira GMD, Teodoro FS et al (2018) Trimellitated sugarcane bagasse: a versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: batch adsorption in a monocomponent system. J Colloid Interface Sci 515:172–188

    Article  CAS  PubMed  Google Scholar 

  3. Vega-Negron AL, Alamo-Nole L, Perales-Perez O et al (2018) Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment. Int J Environ Res 12(1):59–65

    Article  Google Scholar 

  4. Zhou L, Jin J, Liu Z et al (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185(2–3):1045–1052

    Article  CAS  PubMed  Google Scholar 

  5. Vahdat A, Bahrami SH, Arami M et al (2010) Decomposition and decoloration of a direct dye by electron beam radiation. Radiat Phys Chem 79(1):33–35

    Article  CAS  Google Scholar 

  6. Jiang R, Zhu H, Li X et al (2009) Visible light photocatalytic decolourization of CI Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem Eng J 152(2–3):537–542

    Article  CAS  Google Scholar 

  7. Mahmoodi NM, Salehi R, Arami M et al (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267(1):64–72

    Article  CAS  Google Scholar 

  8. Khorramfar S, Mahmoodi NM, Arami M et al (2011) Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination 279(1–3):183–189

    Article  CAS  Google Scholar 

  9. Homayoonfal M, Mehrnia MR (2014) Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Sep Purif Technol 130:74–83

    Article  CAS  Google Scholar 

  10. Huang H, Zhang J, Jiang L et al (2017) Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J Alloys Compd 718:112–115

    Article  CAS  Google Scholar 

  11. Akerdi AG, Bahrami SH, Arami M et al (2016) Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 159:293–299

    Article  CAS  PubMed  Google Scholar 

  12. Agnihotri S, Singhal R (2019) Effect of sodium alginate content in acrylic acid/sodium humate/sodium alginate superabsorbent hydrogel on removal capacity of MB and CV dye by adsorption. J Polym Environ 27(2):372–385

    Article  CAS  Google Scholar 

  13. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresou Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  14. Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48(3):522–526

    Article  CAS  Google Scholar 

  15. Mahmoodi NM, Arami M, Bahrami H et al (2010) Novel biosorbent (Canola hull): surface characterization and dye removal ability at different cationic dye concentrations. Desalination 264(1–2):134–142

    Article  CAS  Google Scholar 

  16. Shi W, Guo F, Wang H et al (2018) Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution. Appl Surf Sci 433:790–797

    Article  CAS  Google Scholar 

  17. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33(4):399–447

    Article  CAS  Google Scholar 

  18. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  CAS  Google Scholar 

  19. Demello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402

    Article  CAS  PubMed  Google Scholar 

  20. Ngah WW, Teong LC, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  21. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43(5):401–414

    Article  CAS  PubMed  Google Scholar 

  22. Sadeghi-Kiakhani M, Arami M, Gharanjig K (2013) Preparation of chitosan-ethyl acrylate as a biopolymer adsorbent for basic dyes removal from colored solutions. J Environ Chem Eng 1(3):406–415

    Article  CAS  Google Scholar 

  23. Vaz MG, Pereira AGB, Fajardo AR et al (2017) Methylene blue adsorption on chitosan-g-poly (acrylic acid)/rice husk ash superabsorbent composite: kinetics, equilibrium, and thermodynamics. Water Air Soil Pollut 228(1):14–27

    Article  CAS  Google Scholar 

  24. Kyzas GZ, Kostoglou M, Vassiliou AA et al (2011) Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan. Chem Eng J 168(2):577–585

    Article  CAS  Google Scholar 

  25. Xing Y, Sun XM, Li BH (2009) Pyromellitic dianhydride-modified chitosan microspheres for enhancement of cationic dyes adsorption. Environ Eng Sci 26(3):551–558

    Article  CAS  Google Scholar 

  26. Crini G, Gimbert F, Robert C et al (2008) The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies. J Hazard Mater 153(1–2):96–106

    Article  CAS  PubMed  Google Scholar 

  27. Kyzas GZ, Siafaka PI, Pavlidou EG et al (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    Article  CAS  Google Scholar 

  28. Shamsi M, Zahedi P, Ghourchian H et al (2017) Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. Int J Biol Macromol 99:433–442

    Article  CAS  PubMed  Google Scholar 

  29. Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ et al (2014) On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics. Adv Funct Mater 24(4):432–441

    Article  CAS  Google Scholar 

  30. Majedi FS, Hasani-Sadrabadi MM, Emami SH et al (2013) Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip 13(2):204–207

    Article  CAS  PubMed  Google Scholar 

  31. Silva JP, Sousa S, Rodrigues J et al (2004) Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Sep Purif Technol 40(3):309–315

    Article  CAS  Google Scholar 

  32. Karnik R, Gu F, Basto P et al (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    Article  CAS  PubMed  Google Scholar 

  33. Fooladgar S, Teimouri A, Nasab SG (2019) Highly efficient removal of lead ions from aqueous solutions using chitosan/rice husk ash/nano alumina with a focus on optimization by response surface methodology: isotherm, kinetic, and thermodynamic studies. J Polym Environ 27(5):1025–1042

    Article  CAS  Google Scholar 

  34. Nandi BK, Goswami A, Purkait MK (2009) Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Appl Clay Sci 42(3–4):583–590

    Article  CAS  Google Scholar 

  35. Melo BC, Paulino FAA, Cardoso VA et al (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydr Polym 181:358–367

    Article  CAS  PubMed  Google Scholar 

  36. Maleki A, Pajootan E, Hayati B (2015) Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem E 51:127–134

    Article  CAS  Google Scholar 

  37. Yu S, Liu M, Ma M et al (2010) Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J Membr Sci 350(1–2):83–91

    Article  CAS  Google Scholar 

  38. Liu Y, Zheng Y, Wang A (2010) Response surface methodology for optimizing adsorption process parameters for methylene blue removal by a hydrogel composite. Adsorpt Sci Technol 28(10):913–922

    Article  Google Scholar 

  39. Calvete T, Lima EC, Cardoso NF et al (2009) Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution—kinetic, equilibrium, and thermodynamic studies. Chem Eng J 155(3):627–636

    Article  CAS  Google Scholar 

  40. Thomas WJ, Crittenden B (1998) Adsorption technology and design. Elsevier, London

    Google Scholar 

  41. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1–3):259–267

    Article  CAS  Google Scholar 

  42. Greluk M, Hubicki Z (2010) Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chem Eng J 162(3):919–926

    Article  CAS  Google Scholar 

  43. Hameed BH, Ahmad AL, Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments 75(1):143–149

    Article  CAS  Google Scholar 

  44. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929

    Article  CAS  PubMed  Google Scholar 

  45. Khalili MS, Zare K, Moradi O et al (2018) Preparation and characterization of MWCNT–COOH–cellulose–MgO NP nanocomposite as adsorbent for removal of methylene blue from aqueous solutions: isotherm, thermodynamic and kinetic studies. J Nanostruct Chem 8:103–121

    Article  CAS  Google Scholar 

  46. Mahida VP, Patel MP (2016) Removal of some most hazardous cationic dyes using novel poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Arab J Chem 9(3):430–442

    Article  CAS  Google Scholar 

  47. Özcan A, Özcan AS (2005) Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. J Hazard Mater 125(1–3):252–259

    Article  CAS  PubMed  Google Scholar 

  48. Yagub MT, Sen TK, Afroze S et al (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloids Interface 209:172–184

    Article  CAS  Google Scholar 

  49. Crini G, Peindy HN (2006) Adsorption of CI Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigments 70(3):204–211

    Article  CAS  Google Scholar 

  50. Dehghani MH, Dehghan A, Alidadi H et al (2017) Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study. Korean J Chem Eng 34(6):1699–1707

    Article  CAS  Google Scholar 

  51. Fu J, Chen Z, Wang M et al (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    Article  CAS  Google Scholar 

  52. Auta M, Hameed BH (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361

    Article  CAS  Google Scholar 

  53. Albadarin AB, Collins MN, Naushad M et al (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272

    Article  CAS  Google Scholar 

  54. Khanday WA, Asif M, Hameed BH (2017) Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int J Biol Macromol 95:895–902

    Article  CAS  PubMed  Google Scholar 

  55. Zhou K, Li Y, Li Q et al (2018) Kinetic, isotherm and thermodynamic studies for removal of methylene blue using β-cyclodextrin/activated carbon aerogels. J Polym Environ 26(8):3362–3370

    Article  CAS  Google Scholar 

  56. Zhu L, Wang Y, He T et al (2016) Assessment of potential capability of water bamboo leaves on the adsorption removal efficiency of cationic dye from aqueous solutions. J Polym Environ 24(2):148–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Zahedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, S., Zahedi, P., Bahrami, SH. et al. Microfluidic Fabrication of Nanoparticles Based on Ethyl Acrylate-Functionalized Chitosan for Adsorption of Methylene Blue from Aqueous Solutions. J Polym Environ 27, 1653–1665 (2019). https://doi.org/10.1007/s10924-019-01463-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01463-6

Keywords

Navigation