Skip to main content

Advertisement

Log in

Development of Green Composites Based on Polypropylene and Corncob Agricultural Residue

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Green composites of polypropylene (PP) and corncob (CCB) agricultural residue with CCB content ranging from 5 to 30 wt% were compounded by melt extrusion and their properties investigated by density measurements, thermogravimetric analyses, differential scanning calorimetry, scanning electron microscopy (SEM) and tension, flexural and impact properties. Properties were dependent on CCB content. SEM micrographs showed that PP/CCB composites are composed of all layers of the corncob, but with a higher content of woody ring and pith. Composites with CCB up to 20 wt% presented particles evenly dispersed into PP matrix and density values ranging from 0.929 to 1.026 g/cm3. Thermal analyses showed that CCB is thermally stable up to 200 °C, ensuring that no degradation took place during processing, and PP/CCB composites are more crystalline than neat PP. Tensile strength and elongation at break of the composites decreased respectively from 30 to 20 MPa, and 22.7 to 3.7%, and the elastic modulus increased while the impact strength remained practically constant at 14 J/m for the filling contents tested. Elastic and flexural moduli increased respectively from 906 MPa to 1.1 GPa and from to 1.26 to 1.81 GPa with corncob addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  2. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1:AID-MAME1%3e3.0.CO;2-W

    Article  Google Scholar 

  3. Van De Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442. https://doi.org/10.1016/S0142-9418(01)00107-6

    Article  Google Scholar 

  4. Medeiros ES, Santos ASF, Dufresne A, et al (2013) Bionanocomposites. In: Polymer composites. Wiley, pp 361–430

  5. Faruk O, Bledzki AK, Fink H-P, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  6. Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. https://doi.org/10.1016/j.indcrop.2012.10.014

    Article  CAS  Google Scholar 

  7. Guan J, Hanna MA (2004) Functional properties of extruded foam composites of starch acetate and corn cob fiber. Ind Crops Prod 19:255–269. https://doi.org/10.1016/j.indcrop.2003.10.007

    Article  CAS  Google Scholar 

  8. Panthapulakkal S, Sain M (2007) Agro-residue reinforced high-density polyethylene composites: fiber characterization and analysis of composite properties. Composite A 38:1445–1454. https://doi.org/10.1016/j.compositesa.2007.01.015

    Article  CAS  Google Scholar 

  9. Donnelly BJ, Helm JL, Lee HA (1973) The carbohydrate composition of corn cob hemicelluloses. Cereal Chem 50:553–563

    Google Scholar 

  10. Monroe KP (1921) The preparation and technical uses of furfurai. J Ind Eng Chem 13:133–135. https://doi.org/10.1021/ie50134a012

    Article  CAS  Google Scholar 

  11. Ferreira-Leitao V, Gottschalk LMF, Ferrara MA et al (2010) Biomass residues in Brazil: availability and potential uses. Waste and Biomass Valorization 1:65–76. https://doi.org/10.1007/s12649-010-9008-8

    Article  CAS  Google Scholar 

  12. Crop Production 2015 Summary (January 2016). USDA, National Agricultural Statistics Service, United States Department of Agriculture. https://www.usda.gov/nass/PUBS/TODAYRPT/cropan16.pdf

  13. Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60(13):3381–3388. https://doi.org/10.1021/jf204105k

    Article  CAS  PubMed  Google Scholar 

  14. Trostle R (2008) Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. International Agriculture and Trade Outlook No. (WRS-0801), 30 p. https://www.ers.usda.gov/webdocs/publications/40463/12274_wrs0801_1_.pdf?v=0

  15. Anulacion M (2019) Brazil corn: production estimated higher. United States Department of Agriculture, Foreign Agricultural Service, World Agricultural Production. Circular Series WAP 4–19 April 2019. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  16. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584. https://doi.org/10.1016/j.envint.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  17. Marques MF, Melo R, da Araujo RS et al (2014) Improvement of mechanical properties of natural fiber–polypropylene composites using successive alkaline treatments. J Appl Polym Sci Banner 3:150. https://doi.org/10.1002/app.41710

    Article  CAS  Google Scholar 

  18. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Composites A 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  19. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Composite B 42:856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  20. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  21. Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  22. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Progress in polymer science biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  23. Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegradation 59:85–89. https://doi.org/10.1016/j.ibiod.2006.07.011

    Article  CAS  Google Scholar 

  24. Husseinsyah S, Marliza MZ, Selvi E (2014) Biocomposites from polypropylene and corn cob: effect maleic anhydride grafted polypropylene. Adv Mater Res Adv Mater Res 3:129–137

    Article  Google Scholar 

  25. Ramiah MV (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14:1323–1337. https://doi.org/10.1002/app.1970.070140518

    Article  CAS  Google Scholar 

  26. Jancar J, Tochacek J (2011) Effect of thermal history on the mechanical properties of three polypropylene impact-copolymers. Polym Degrad Stab 96:1546–1556. https://doi.org/10.1016/j.polymdegradstab.2011.05.013

    Article  CAS  Google Scholar 

  27. Tocháček J, Jančář J, Kalfus J, Hermanová S (2011) Processing stability of polypropylene impact-copolymer during multiple extrusion—effect of polymerization technology. Polym Degrad Stab 96:491–498. https://doi.org/10.1016/j.polymdegradstab.2011.01.018

    Article  CAS  Google Scholar 

  28. Peterlin A (1971) Chain scission and plastic deformation in the strained crystalline polymer. J Polym Sci Part C 32:297–317. https://doi.org/10.1002/polc.5070320116

    Article  Google Scholar 

  29. Peterlin A (1971) Molecular model of drawing polyethylene and polypropylene. J Mater Sci 6:490–508. https://doi.org/10.1007/BF00550305

    Article  CAS  Google Scholar 

  30. Chun KS, Husseinsyah S (2013) Polylactic acid/corn cob eco-composites: effect of new organic coupling agent. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705712475008

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Research Council (CNPq) and Coordination for the Improvement of Higher Education Level Personnel (CAPES) for the financial aid provided. Thanks are also due to Dr. L. H. Carvalho for helping with polymer processing.

Funding

This study was funded by National Research Council (CNPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Medeiros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, R.R.F., Siqueira, D.D., Wellen, R.M.R. et al. Development of Green Composites Based on Polypropylene and Corncob Agricultural Residue. J Polym Environ 27, 1677–1685 (2019). https://doi.org/10.1007/s10924-019-01462-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01462-7

Keywords

Navigation