Skip to main content
Log in

Removal of Nitrate from Water by Alginate-Derived Carbon Aerogel Modified by Protonated Cross-Linked Chitosan

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a carbonaceous aerogel with superior structural properties was synthesized from sodium alginate with a specific surface area and density of about 470 m2 g−1 and 0.05 g cm−3, respectively. In order to adsorb nitrate from water, the surface of the aerogel was modified by protonated cross-linked chitosan. To investigate the morphology, elemental composition, crystalline phases and surface functional groups of the adsorbent, various techniques such as field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy were employed. To study the performance of this green adsorbent in nitrate removal process, the effect of nitrate initial concentration, adsorbent dosage, pH of solutions were investigated in batch mode. It was revealed that the Langmuir isotherm model could properly describe the experimental equilibrium data and the maximum adsorption capacity was evaluated to be about 18 mg g−1 at neutral pH and room temperature. Besides, the kinetic data perfectly followed the pseudo-second order model. Thermodynamic analysis showed that the adsorption reaction was spontaneous, exothermic with decreased randomness at the solid–liquid interface. The macroscopic size of the adsorbent allowed its facile separation from the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Afkhami A, Madrakian T, Karimi Z (2007) The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. J Hazard Mater 144(1):427–431

    Article  CAS  PubMed  Google Scholar 

  2. Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504. https://doi.org/10.1016/j.cej.2011.01.103

    Article  CAS  Google Scholar 

  3. Della Rocca C, Belgiorno V, Meriç S (2007) Overview of in situ applicable nitrate removal processes. Desalination 204(1):46–62

    Article  CAS  Google Scholar 

  4. Loganathan P, Vigneswaran S, Kandasamy J (2013) Enhanced removal of nitrate from water using surface modification of adsorbents—a review. J Environ Manage 131:363–374

    Article  CAS  PubMed  Google Scholar 

  5. Rezaee A, Godini H, Dehestani S, Khavanin A (2008) Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. J Environ Health Sci Eng 2:125–130

    Google Scholar 

  6. Batheja K, Sinha A, Seth G (2009) Studies on water treatment for removal of nitrate. Asian J Exp Sci 23(1):61–66

    CAS  Google Scholar 

  7. Mishra P, Patel R (2009) Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J Environ Manage 90(1):519–522

    Article  CAS  PubMed  Google Scholar 

  8. Karimi B, Rajaei MS, Ganadzadeh MJ, Mashayekhi M, Jahanbakhsh M (2013) Evaluation of nitrate removal from water by Fe/H2O2 and adsorption on activated carbon. Arak Med Univ J 15(10):67–76

    Google Scholar 

  9. World Health Organization (WHO) (2011) Guidelines for drinking-water quality. WHO Chron 38:104–108

    Google Scholar 

  10. United States of America Environmental Protection Agency (EPA) (2009) National primary drinking water standards. https://www.epa.gov/ground-water-and-drinking-water

  11. Australian Drinking Water Guidlines 6 (ADWG) (2011) Version 3.2. National Health and Medical Research Council: Commonwealth of Australia, Canberra. https://www.clearwatervic.com.au/user-data/resource-files/Aust_drinking_water_guidelines.pdf

  12. Masukume M, Eskandarpour A, Onyango MS, Ochieng A, Otieno F (2011) Treating high nitrate groundwater using surfactant modified zeolite in fixed bed column. Sep Sci Technol 46(7):1131–1137

    Article  CAS  Google Scholar 

  13. Institute of Standards & Industrial Research of Iran (ISIRI) (1997) Physical and chemical quality of drinking water, Fifth edn, No. 1053, Tehran. http://www.environment-lab.ir/standards/water-drink-standard-1053.pdf

  14. Wang Z, Jiang Y, Awasthi MK, Wang J, Yang X, Amjad A, Wang Q, Lahori AH, Zhang Z (2018) Nitrate removal by combined heterotrophic and autotrophic denitrification processes: impact of coexistent ions. Biores Technol 250:838–845. https://doi.org/10.1016/j.biortech.2017.12.009

    Article  CAS  Google Scholar 

  15. Hojjat Ansari M, Basiri Parsa J (2016) Removal of nitrate from water by conducting polyaniline via electrically switching ion exchange method in a dual cell reactor: optimizing and modeling. Sep Purif Technol 169:158–170. https://doi.org/10.1016/j.seppur.2016.06.013

    Article  CAS  Google Scholar 

  16. Epsztein R, Nir O, Lahav O, Green M (2015) Selective nitrate removal from groundwater using a hybrid nanofiltration—reverse osmosis filtration scheme. Chem Eng J 279:372–378. https://doi.org/10.1016/j.cej.2015.05.010

    Article  CAS  Google Scholar 

  17. Djouadi Belkada F, Kitous O, Drouiche N, Aoudj S, Bouchelaghem O, Abdi N, Grib H, Mameri N (2018) Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater. Sep Purif Technol 204:108–115. https://doi.org/10.1016/j.seppur.2018.04.068

    Article  CAS  Google Scholar 

  18. Majlesi M, Mohseny SM, Sardar M, Golmohammadi S, Sheikhmohammadi A (2016) Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes. Sustain Environ Res 26(6):287–290. https://doi.org/10.1016/j.serj.2016.09.002

    Article  CAS  Google Scholar 

  19. Ghaemi N, Daraei P, Akhlaghi FS (2018) Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: fabrication, characterization and performance in nitrate removal from water. Carbohyd Polym 191:142–151. https://doi.org/10.1016/j.carbpol.2018.03.024

    Article  CAS  Google Scholar 

  20. Tabrizi N, Yavari M (2015) Methylene blue removal by carbon nanotube-based aerogels. Chem Eng Res Des 94:516–523

    Article  CAS  Google Scholar 

  21. Öztürk N, Bektaş TE (2004) Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater 112(1):155–162. https://doi.org/10.1016/j.jhazmat.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Process Eng 21:84–95. https://doi.org/10.1016/j.jwpe.2017.12.005

    Article  Google Scholar 

  23. Khan MA, Ahn YT, Kumar M, Lee W, Min B, Kim G, Cho DW, Park WB, Jeon BH (2011) Adsorption studies for the removal of nitrate using modified lignite granular activated carbon. Sep Sci Technol 46(16):2575–2584. https://doi.org/10.1080/01496395.2011.601782

    Article  CAS  Google Scholar 

  24. Marsh H, Reinoso FR (2006) Activated carbon, 1st edn. Elsevier, Amsterdam, ISBN: 9780080455969

  25. Aygün A et al (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor Mesopor Mater 66(2):189–195

    Article  CAS  Google Scholar 

  26. Khani A, Mirzaei M (2008) Comparative study of nitrate removal from aqueous solution using powder activated carbon and carbon nanotubes. In: 2nd Inter-national IUPAC conference on green chemistry, Russia, pp 14–19

  27. Kaneko K, Camara S, Ozeki S, Souma M (1991) Dynamic NO3 adsorption characteristics of iron oxide-dispersed activated carbon fibers. Carbon 29:1287–1289

    Article  CAS  Google Scholar 

  28. Meena AK et al (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122(1):161–170

    Article  CAS  PubMed  Google Scholar 

  29. Bhatnagar A, Ji M, Choi YH, Jung W, Lee SH, Kim SJ, Lee G, Suk H, Kim SH, Min B, Kim SH, Jeon BH, Kang JW (2008) Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Sep Sci Technol 43(4):886–907. https://doi.org/10.1080/01496390701787461

    Article  CAS  Google Scholar 

  30. Bombuwala Dewage N et al (2019) Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized douglas fir biochar. Chemosphere 225:943–953

    Article  CAS  Google Scholar 

  31. Mohan D et al (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310(1):57–73

    Article  CAS  PubMed  Google Scholar 

  32. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38(12):3401–3418

    Article  CAS  PubMed  Google Scholar 

  33. Daemi H, Barikani M, Barmar M (2013) Variations in calcium and alginate ions concentration in relation to the properties of calcium alginate nanoparticles. Sci Technol 26(1):25–32

    Google Scholar 

  34. Jaafari K, Elmaleh S, Coma J, Benkhouja K (2001) Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. WaterSA 27(1):9–14

    CAS  Google Scholar 

  35. Liu Y, Nguyen LD, Truong-Huu T, Liu Y, Romero T, Janowska I, Begin D, Pham-Huu C (2012) Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility. Mater Lett 79:128–131

    Article  CAS  Google Scholar 

  36. Golie WM, Upadhyayula S (2016) Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. J Water Process Eng 12:58–65

    Article  Google Scholar 

  37. Wang L, Li X, Ma J, Wu Q, Duan X (2014) Non-activated, N, S-co-doped biochar derived from banana with superior capacitive properties. Sustain Energy 2(2):39–43

    Google Scholar 

  38. Bombuwala Dewage N et al (2018) Lead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC Adv 8(45):25368–25377

    Article  CAS  Google Scholar 

  39. Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. S Pac J Natl Sci 22(1):32–35

    Article  Google Scholar 

  40. de Pinho Neves A L, Milioli CC, Müller L, Riella HG, Kuhnen NC, Stulzer HK (2014) Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids Surf A 445:34–39

    Article  CAS  Google Scholar 

  41. Mi X, Huang G, Xie W, Wang W, Liu Y, Gao J (2012) Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50(13):4856–4864. https://doi.org/10.1016/j.carbon.2012.06.013

    Article  CAS  Google Scholar 

  42. Zamani S, Tabrizi NS (2015) Removal of methylene blue from water by graphene oxide aerogel: thermodynamic, kinetic, and equilibrium modeling. Res Chem Intermed 41(10):7945–7963

    Article  CAS  Google Scholar 

  43. Zhan Y, Lin J, Zhu Z (2011) Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. J Hazard Mater 186(2–3):1972–1978. https://doi.org/10.1016/j.jhazmat.2010.12.090

    Article  CAS  PubMed  Google Scholar 

  44. Namasivayam C, Sangeetha D (2005) Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste. Indian J Chem Technol 12(5):513

    CAS  Google Scholar 

  45. Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Biores Technol 95(3):255–257. https://doi.org/10.1016/j.biortech.2004.02.015

    Article  CAS  Google Scholar 

  46. Nunell G, Fernandez M, Bonelli P, Cukierman A (2015) Nitrate uptake improvement by modified activated carbons developed from two species of pine cones. J Colloid Interface Sci 440:102–108

    Article  CAS  PubMed  Google Scholar 

  47. Bombuwala Dewage N et al (2018) Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on douglas fir biochar. Bioresour Technol 263:258–265

    Article  CAS  PubMed  Google Scholar 

  48. Ganesan P, Kamaraj R, Vasudevan S (2013) Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J Taiwan Inst Chem Eng 44(5):808–814

    Article  CAS  Google Scholar 

  49. Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40(41):10945–10952. https://doi.org/10.1039/c1dt11005e

    Article  CAS  PubMed  Google Scholar 

  50. Parker HL, Budarin VL, Clark JH, Hunt AJ (2013) Use of starbon for the adsorption and desorption of phenols. ACS Sustain Chem Eng 1:1311–1318

    Article  CAS  Google Scholar 

  51. Tan I, Ahmad AL, Hameed B (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154(1):337–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The present study was jointly funded by Materials and Energy Research Center (MERC, No. 521394001) and Iran National Science Foundation (INSF, No. 92029037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Salman Tabrizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirabadi, N.R., Tabrizi, N.S. & Sangpour, P. Removal of Nitrate from Water by Alginate-Derived Carbon Aerogel Modified by Protonated Cross-Linked Chitosan. J Polym Environ 27, 1642–1652 (2019). https://doi.org/10.1007/s10924-019-01458-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01458-3

Keywords

Navigation