Skip to main content
Log in

Synergistic Effects of Nano-zinc Oxide on Improving the Flame Retardancy of EVA Composites with an Efficient Triazine-Based Charring Agent

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synergistic effect of nano-zinc oxide (nano-ZnO) on the flame retardancy and thermal stability of intumescent flame retardant ethylene–vinyl acetate (EVA/IFR) consisting of novel hyperbranched triazine-based charring agent (HTCFA) and APP was evaluated by limiting oxygen index (LOI), UL-94 measurement, cone calorimeter test (CCT) and thermogravimetric analysis (TGA), and the residue analysis was also carried out through scanning electron microscopy (SEM), fourier transform infrared (FTIR), laser raman spectroscopy (LRS), and X-ray photoelectron spectroscopy (XPS). The results showed that introducing a certain amount of nano-ZnO could obviously enhance LOI value and UL-94 rating, and effectively restrain the combustion performance of EVA/IFR composites, leading to the decrease of heat and smoke release. The addition of 0.5 wt% nano-ZnO into EVA/IFR composite obtained the highest catalytic effectivity (CAT-EFF). TGA results uncovered a distinct synergistic carbonization effect existed between nano-ZnO and IFR, and nano-ZnO could obviously improve the high-temperature thermal stability and promote the char formation of IFR and EVA/IFR. Analysis of final char residues proved that the incorporation of appropriate amount of nano-ZnO contributed to remaining more P and forming more high-quality graphitization char layers with richer P–O–C and P–N cross-linking structures in condensed phase owing to the catalytic carbonization effect of nano-ZnO on IFR system, which played a critical role in remarkable improvement of flame retardancy and smoke suppression properties of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang F, Sun WY, Wang Y, Liu BS (2015) Influence of the pentaerythritol phosphate melamine salt content on the combustion and thermal decomposition process of intumescent flame-retardant ethylene-vinyl acetate copolymer composites. J Appl Polym Sci 132:42148

    Google Scholar 

  2. Lu K, Ye LJ, Liang QS, Li YJ (2015) Selectively located aluminum hydroxide in rubber phase in a TPV: towards to a halogen-free flame retardant thermoplastic elastomer with ultrahigh flexibility. Polym Composite 36:1258–1265

    Article  CAS  Google Scholar 

  3. Qu HQ, Liu X, Xu JZ, Ma HY, Jiao YH, Xie JX (2014) Investigation on thermal degradation of poly(1,4-butylene terephthalate) filled with aluminum hypophosphite and Trimer by thermogravimetric analysis-Fourier transform infrared spectroscopy and thermogravimetric analysis-mass spectrometry. Ind Eng Chem Res 53:8476–8483

    Article  CAS  Google Scholar 

  4. Liu X, Wang JY, Yang XM, Wang YL, Hao JW (2017) Application of TG/FTIR TG/MS and cone calorimetry to understand flame retardancy and catalytic charring mechanism of boron phosphate in flame-retardant PUR–PIR foams. J Therm Anal Calorim 130:1817–1827

    Article  CAS  Google Scholar 

  5. Yang W, Hong NN, Song L, Hu Y (2012) Studies on mechanical properties, thermal degradation, and combustion behaviors of poly(1,4-butylene terephthalate)/glass fiber/cerium hypophosphite composites. Ind Eng Chem Res 51:8253–8261

    Article  CAS  Google Scholar 

  6. Demir H, Arkış E, Balköse D, Ülkü S (2015) Synergistic effect of natural zeolites on flame retardant additives. Polym Degrad Stab 89:478–483

    Article  CAS  Google Scholar 

  7. Feng CM, Liang MY, Jiang JL, Zhang YK, Huang JG, Liu HB (2016) Synergism effect of CeO2 on the flame retardant performance of intumescent flame retardant polypropylene composites and its mechanism. J Anal Appl Pyrol 122:405–414

    Article  CAS  Google Scholar 

  8. Wang L, Wang W, Wang BB, Wu Y, Hu Y, Song L, Richard KK, Yuen (2012) The impact of metal oxides on the combustion behavior of ethylene-vinyl acetate copolymers containing an intumenscent flame retardant. Ind Eng Chem Res 51:7884–7890

    Article  CAS  Google Scholar 

  9. Liu Y, Wang Q (2006) Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene. Polym Degrad Stab 91:2513–2519

    Article  CAS  Google Scholar 

  10. Estevao LRM, Le Bras M, Delobel R, Nascimento RSV (2005) Spent refinery catalyst as a synergistic agent in intumescent formulations: influence of the catalyst’s particle size and constituents. Polym Degrad Stab 88:444–455

    Article  CAS  Google Scholar 

  11. Yi JS, Yin HQ, Cai XF (2013) Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. J Therm Anal Calorim 111:725–734

    Article  CAS  Google Scholar 

  12. Wu N, Yang RJ (2011) Effects of metal oxides on intumescent flame retardant polypropylene. Polym Adv Technol 22:495–501

    Article  CAS  Google Scholar 

  13. Jiao C, Zhuo J, Chen X (2013) Synergistic effects of zinc oxide in intumescent flame retardant silicone rubber composites. Plast Rubber Compos 42:374–378

    Article  CAS  Google Scholar 

  14. Xu ML, Chen YJ, Qian LJ, Wang JY, Tang S (2014) Component ratio effects of hyperbranched triazine compound and ammonium polyphosphate in flame-retardant polypropylene composites. J Appl Polym Sci 131:41006

    Article  CAS  Google Scholar 

  15. Xu B, Ma W, Wu X, Qian LJ, Jiang S (2018) Flame retardancy and thermal behavior of intumescent flame retardant EVA composites with an efficient triazine-based charring agent. Mater Res Express 5:045309

    Article  CAS  Google Scholar 

  16. Feng CM, Zhang Y, Liang D, Liu SW, Chi ZG, Xu JR (2013) Flame retardancy and thermal degradation behaviors of polypropylene composites with novel intumescent flame retardant and manganese dioxide. J Anal Appl Pyrolysis 104:59–67

    Article  CAS  Google Scholar 

  17. Rimez B, Rahier H, Biesemans M, Bourbigot S, Van Mele B (2015) Flame retardancy and degradation mechanism of poly(vinyl acetate) in combination with intumescent flame retardants: I. Ammonium poly(phosphate). Polym Degrad Stab 25:277–292

    Google Scholar 

  18. Rimez B. Van Assche G, Bourbigot S, Rahier H (2016) Modeled decomposition kinetics of flame retarded poly(vinyl acetate). Chem J Chin Univ 20:146–149

    Google Scholar 

  19. Zanetti M, Camino G, Thomann R, Mülhaupt R (2011) Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 42:4501–4507

    Article  Google Scholar 

  20. Riva A, Camino G, Fomperie L, Amigouët P (2003) Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stab 82:341–346

    Article  CAS  Google Scholar 

  21. Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881–887

    Article  CAS  Google Scholar 

  22. Feng CM, Zhang Y, Liu SW, Chi ZG, Xu JR (2013) Synergistic effects of 4A zeolite on the flame retardant properties and thermal stability of a novel halogen-free PP/IFR composite. Polym Adv Technol 24:478–486

    Article  CAS  Google Scholar 

  23. Nie SB, Hu Y, Song L, He QL, Yang DD, Chen H (2008) Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame-retardant properties of polypropylene. Polym Adv Technol 19:1077–1083

    Article  CAS  Google Scholar 

  24. Zhou S, Song L, Wang ZZ, Hu Y, Xing WY (2008) Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polym Degrad Stab 93:1799–1806

    Article  CAS  Google Scholar 

  25. Mahapatra SS, Karak N (2007) s-Triazine containing flame retardant hyperbranched polyamines: synthesis, characterization and properties evaluation. Polym Degrad Stab 92:947–955

    Article  CAS  Google Scholar 

  26. Ye L, Zhang YJ, Wang SH, Gao GG, Liu JX, Zhou YL, Liu H (2014) Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene. J Therm Anal Calorim 115:1065–1071

    Article  CAS  Google Scholar 

  27. Xu GY, Cheng JY, Wu HY, Lin Q, Zhang YC, Wang H (2013) Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly (ethylene vinyl acetate) nanocomposites. Polym Composite 34:109–121

    Article  CAS  Google Scholar 

  28. Peng HQ, Wang DY, Zhou Q, Wang YZ (2008) An S- and P-containing flame retardant for polypropylene. Chin J Polym Sci 26:299–309

    Article  CAS  Google Scholar 

  29. Meng FC, Liang MY, Jiang JL, Liu HB, Huang JG (2016) Synergistic effect of ammonium polyphosphate and triazine-based charring agent on the flame retardancy and combustion behavior of ethylene-vinyl acetate copolymer. J Anal Appl Pyrol 119:259–269

    Article  CAS  Google Scholar 

  30. Deng CL, Deng C, Zhao J, Li RM, Fang WH, Wang YZ (2015) Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. Chin J Polym Sci 33:203–214

    Article  CAS  Google Scholar 

  31. Ke CH, Li J, Fang KY, Zhu QL, Zhu J, Yan Q, Wang YZ (2010) Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab 95:763–770

    Article  CAS  Google Scholar 

  32. Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM (2014) Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis. Appl Surf Sci 316:315–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Beijing Municipality (CN) (2192014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Xu or Lijun Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Ma, W., Bi, X. et al. Synergistic Effects of Nano-zinc Oxide on Improving the Flame Retardancy of EVA Composites with an Efficient Triazine-Based Charring Agent. J Polym Environ 27, 1127–1140 (2019). https://doi.org/10.1007/s10924-019-01400-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01400-7

Keywords

Navigation