Skip to main content
Log in

CoFe2O4 Nano-particles for Radical Oxidative Degradation of High Molecular Weight Polybutadiene

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer waste production increased dramatically in the last decades, and has reached to 380 million tons (Mt.) in 2015. Due to their long-term stability, these materials impose a serious environmental challenge. Currently, recycling of polymer waste focuses on re-use of actual products, mechanical processing, chemical recycling, and bio-degradation into environmentally friendly materials. In our previous work, we proposed a new approach for radical-initiated oxidative degradation of polymers using cobalt ferrite (CoFe2O4) nanoparticles. In our current work, we focus on the use of CoFe2O4 nanoparticles as catalysts for radical degradation of high molecular weight polybutadiene. Cobalt ferrite nanoparticles were embedded into the polybutadiene polymeric matrix, with the aim of studying degradation in polymeric products that can be manufactured with catalytic nanoparticles. The polymer degradation process was characterized using gel permeation and size exclusion chromatography measurements, thermogravimetric analysis, FTIR, NMR, and mass spectroscopy. Based on the results from these diverse measurements, we propose a mechanism for the degradation process. Overall, our results show that the radical processes within the polybutadiene polymer lead to two parallel processes: polymer crosslinking and polymer scission. Moreover, we show that the ratio between crosslinking and degradation can be controlled by the reaction duration and catalyst concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab 98:2801–2812

    Article  CAS  Google Scholar 

  3. Ali Shah A, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeterior Biodegrad 83:145–157

    Article  CAS  Google Scholar 

  4. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14:233–248

    Article  CAS  Google Scholar 

  5. Garforth AA, Lin YH, Sharratt PN, Dwyer J (1998) Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl Catal A 169:331–342

    Article  CAS  Google Scholar 

  6. Shah J, Jan ÆMR, Mabood ÆF (2007) Catalytic conversion of waste tyres into valuable hydrocarbons. J Polym Environ 15:207–211

    Article  CAS  Google Scholar 

  7. Pickering SJ (2006) Recycling technologies for thermoset composite materials—current status. Composites A 37:1206–1215

    Article  CAS  Google Scholar 

  8. La Mantia FP et al (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92

    Article  CAS  Google Scholar 

  9. Tsuchii A, Suzuki T, Fukuoka S (1984) Bacterial degradation of 1,4-type polybutadiene. Agric Biol Chem 48:621–625

    CAS  Google Scholar 

  10. Adam C, Lacoste J, Lemaire J (1989) Photo-oxidation of elastomeric materials. 1. Photooxidation of polybutadienes. Polym Degrad Stab 24:185–200

    Article  CAS  Google Scholar 

  11. Jiang DD, Levchik GF, Levchik SV, Wilkie CA (1999) Thermal decomposition of cross-linked polybutadiene and its copolymers. Polym Degrad Stab 65:387–394

    Article  CAS  Google Scholar 

  12. Liu FS, Li Z, Yu S et al (2009) Methanolysis and hydrolysis of polycarbonate under moderate conditions. J Polym Environ 17:208–211

    Article  CAS  Google Scholar 

  13. Kaczmarek H (1995) Polymer bulletin accelerated photodegradation of cis 1,4-polybutadiene in the presence of hydrogen peroxide. Polym Bull 34:211–218

    Article  CAS  Google Scholar 

  14. Zheng J et al (2013) Controlled chain-scission of polybutadiene by the schwartz hydrozirconation. Chem: Eur J 19:541–548

    Article  CAS  Google Scholar 

  15. Gupte SL, Madras G (2004) Catalytic degradation of polybutadiene. Polym Degrad Stab 86:529–533

    Article  CAS  Google Scholar 

  16. Espino D, Haruvy Y, Yossef B, Yitzhak M (2018) Radical degradation processes initiated by catalytic nanoparticles of CoFe2O4 towards polymer waste application. J Polym Environ 8:3389–3396

    Article  CAS  Google Scholar 

  17. Saleem M, Inamullah K, Sohail M, Saeed N (2016) Conversion of mixed low-density polyethylene wastes into liquid fuel by novel CaO/SiO2 catalyst. J Polym Environ 24:255–263

    Article  CAS  Google Scholar 

  18. Aguado J, Serrano DP, Sotelo JL, Van Grieken R, Escola JM (2001) Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5. Ind Eng Chem Res 40:5696–5704

    Article  CAS  Google Scholar 

  19. Serrano DP, Aguado J, Escola JM, Rodríguez JM (2002) Studies in surface science and catalysis, vol 142A. Elsevier, Amsterdam, pp 77–84

    Google Scholar 

  20. Marczewski M et al (2013) Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl Catal B 129:236–246

    Article  CAS  Google Scholar 

  21. Xie C et al (2008) Study on catalytic pyrolysis of polystyrene over base modified silicon mesoporous molecular sieve. Catal Commun 9:1132–1136

    Article  CAS  Google Scholar 

  22. Ramli A, Bakar A, Ratnasari D (2011) Effect of calcination method on the catalytic degradation of polystyrene using Al2O3 supported Sn and Cd catalysts. J Appl Sci 11:1346–1350

    Article  CAS  Google Scholar 

  23. Thomas RT, Sandhyarani N (2013) Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Adv 3:14080–14087

    Article  CAS  Google Scholar 

  24. Bhatia M, Girdhar A, Chandrakar B, Tiwari A (2013) Implicating nanoparticles as potential biodegradation enhancers: a review. J Nanomed Nanotechnol 4:2

    Article  CAS  Google Scholar 

  25. Enoki M, Kaita S, Wakatsuki Y, Doi Y, Iwata T (2004) Oxidative degradation of cis- and trans-1,4-polybutadienes by horseradish peroxidase/1-hydroxybenzotriazole. Polym Degrad Stab 84:321–326

    Article  CAS  Google Scholar 

  26. Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R (1998) Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J Mater Res 13:2975–2981

    Article  CAS  Google Scholar 

  27. Ayyappan S, Panneerselvam G, Antony MP, Philip J (2011) High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater Chem Phys 130:1300–1306

    Article  CAS  Google Scholar 

  28. Beißmann S et al (2013) Monitoring the degradation of stabilization systems in polypropylene during accelerated aging tests by liquid chromatography combined with atmospheric pressure chemical ionization mass spectrometry. Polym Degrad Stab 98:1655–1661

    Article  CAS  Google Scholar 

  29. McNeill IC, Stevenson WTK (1985) The structure and stability of oxidised polybutadiene. Polym Degrad Stab 11:123–143

    Article  CAS  Google Scholar 

  30. Binder JL (1963) The infrared spectra and structures of polybutadienes. J Polym Sci A 1:47–58

    CAS  Google Scholar 

  31. Vollhardt KPC, Shore N (2007) Organic chemistry. W. H. Freeman, New York

    Google Scholar 

  32. Badertscher M, Bischofberger K, Munk ME, Pretsch E (2001) A novel formalism to characterize the degree of unsaturation of organic molecules. J Chem Inf Comput Sci 41:889–893

    Article  CAS  PubMed  Google Scholar 

  33. Black JF (1978) Metal-catalyzed autoxidation. The unrecognized consequences of metal-hydroperoxide complex formation. J Am Chem Soc 100:527–535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mr. Mochalov Alexander for assistance with GPC measurements, Dr. Michal Weitman for assistance with APCI-MS measurements, Dr. Michal Afri for assistance with NMR measurements, and our research group for their support throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitzhak Mastai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1022 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espino, D., Haruvy-Manor, Y. & Mastai, Y. CoFe2O4 Nano-particles for Radical Oxidative Degradation of High Molecular Weight Polybutadiene. J Polym Environ 27, 827–836 (2019). https://doi.org/10.1007/s10924-019-01399-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01399-x

Keywords

Navigation