Skip to main content

Advertisement

Log in

Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recycled polyethylene-terephthalate (RPET) bottle regrinds were physically foamed after two types of industrially feasible molecular weight increasing processes. Intrinsic viscosity (IV) of initial waste (0.71 dL/g) increased both after reactive extrusion carried out using a multifunctional epoxy-based chain extender (0.74 dL/g) and after solid state polycondensation (SSP) (0.78 dL/g), while capillary rheometry revealed higher degree of branching in the chain extended PET material. Despite the relatively low IV values (below 0.80 dL/g), physical foaming, a mild and cost-efficient way, was successful in both cases, uniform microcellular foam structures with void fractions ranging between 75 and 83% were achieved. During the experiments morphology change in the materials was tracked by differential scanning calorimetry (DSC) besides recording IV values. The IV drop during foaming was between 0.03 and 0.10 depending on the pre-processing technology. Structure of foams produced from the two different modified RPET materials was compared with each other based on scanning electron microscopic imaging of cryogenic fracture surfaces. The average cell diameters were measured to be 213 and 360 µm in the case of chain extended and SSP-modified materials, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang H, Wen Z-G (2014) The consumption and recycling collection system of PET bottles: a case study of Beijing, China. Waste Manag 34:987–998. https://doi.org/10.1016/j.wasman.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  2. Bartolome L, Imran M, Cho Bong G, Al-Masry WA, Kim DH (2002) Recent developments in the chemical recycling of PET. In: Achilias D (ed) Material recycling—trends and perspectives. Intech, Rijeka

    Google Scholar 

  3. Shena L, Worrell E, Pate MK (2010) Open-loop recycling: Aa LCA case study of PET bottle-to fibre recycling. Resour Conserv Recycl 55:34–52. https://doi.org/10.1016/j.resconrec.2010.06.014

    Article  Google Scholar 

  4. Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Conserv Recycl 55:865–875. https://doi.org/10.1016/j.resconrec.2011.04.009

    Article  Google Scholar 

  5. Dobrovszky K, Ronkay F (2014) Alternative polymer separation technology by centrifugal force in a melted state. Waste Manag 34:2104–2112. https://doi.org/10.1016/j.wasman.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Dobrovszky K (2018) Temperature dependent separation of immiscible polymer blend in a melted state. Waste Manag. https://doi.org/10.1016/j.wasman.2018.04.021

    Article  PubMed  Google Scholar 

  7. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005

    Article  CAS  Google Scholar 

  8. Xanthos M, Dhavalikar R, Tan V, Dey SK, Yilmazer U (2001) Properties and applications of sandwich panels based on PET foams. J Reinf Plast Compos 20:786–793. https://doi.org/10.1106/38PA-R6GR-YLK5-JH3M

    Article  CAS  Google Scholar 

  9. Zhong H, Xi Z, Liu T, Zhao L (2013) In-situ polymerization-modification process and foaming of poly(ethylene terephthalate). Chin J Chem Eng 21:1410–1418. https://doi.org/10.1016/S1004-9541(13)60543-1

    Article  CAS  Google Scholar 

  10. Japon S, Boogh L, Leterrier Y, Manson J-A (2000) Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41:5809–5818. https://doi.org/10.1016/S0032-3861(99)00768-5

    Article  CAS  Google Scholar 

  11. Ronkay F, Molnár B, Dogossy G (2017) The effect of mold temperature on chemical foaming of injection molded recycled polyethylene-terephthalate. Thermochim Acta 651:65–72. https://doi.org/10.1016/j.tca.2017.02.013

    Article  CAS  Google Scholar 

  12. Ronkay F, Molnár B (2017) Time dependence of morphology and mechanical properties of injection molded recycled PET. Int Polym Process 32:203–208. https://doi.org/10.3139/217.3307

    Article  CAS  Google Scholar 

  13. Szabó V, Dogossy G (2017) Recycling of mineral water bottles with chemical foaming. Acta Tech Jaurinensis 10:157–167. https://doi.org/10.14513/actatechjaur.v10.n2.446

    Article  Google Scholar 

  14. Xanthos M, Young M-W, Karayanndis GP, Bikiaris DN (2001) Reactive modification of polyethylene terephthalate with polyepoxides. Polym Eng Sci 41:643–655. https://doi.org/10.1002/pen.10760

    Article  CAS  Google Scholar 

  15. Awaja F, Daver F, Kosior E (2004) Recycled poly(ethylene terephthalate) chain extension by a reactive extrusion process. Polym Eng Sci 44:1579–1587. https://doi.org/10.1002/pen.20155

    Article  CAS  Google Scholar 

  16. Liu B, Xu Q (2013) Effects of bifunctional chain extender on the crystallinity and thermal stability of PET. J Mater Sci Chem Eng 1:9–15. https://doi.org/10.4236/msce.2013.16002

    Article  CAS  Google Scholar 

  17. Wang K, Qian J, Lou F, Yan W, Wu G, Guo W (2017) The effects of two-step reactive processing on the properties of recycled poly(ethylene terephthalate). Polym Bull 74:2479–2496. https://doi.org/10.1007/s00289-016-1850-9

    Article  CAS  Google Scholar 

  18. Xiao L, Wang H, Qian Q, Jiang X, Liu X, Huang B, Chen Q (2012) Molecular and structural analysis of epoxide-modified recycled poly(ethylene terephthalate) from rheological data. Polym Eng Sci 52:2127–2133. https://doi.org/10.1002/pen.23175

    Article  CAS  Google Scholar 

  19. Göltner W (2003) Solid-state polycondensation of polyester resins: fundamentals and industrial production. In: Scheirs J, Long TE (eds) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, Chichester, pp 195–239

    Google Scholar 

  20. Karayannidis GP, Kokkalas DE, Bikiaris DN (1993) Solid-state polycondensation of poly(thylene Terephthalate) recycled from postconsumer soft-drink bottles. I. J Appl Polym Sci 50:2135–2142. https://doi.org/10.1002/app.1993.070501213

    Article  CAS  Google Scholar 

  21. Karayannidis GP, Kokkalas DE, Bikiaris DN (1995) Solid-state polycondensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. II. J Appl Polym Sci 56:405–410. https://doi.org/10.1002/app.1995.070560311

    Article  CAS  Google Scholar 

  22. Zhong H, Xi Z, Liu T, Xu Z, Zhao L (2013) Integrated process of supercritical CO2-assisted melt polycondensation modification and foaming of poly(ethylene terephthalate). J Supercrit Fluids 74:70–79. https://doi.org/10.1016/j.supflu.2012.11.019

    Article  CAS  Google Scholar 

  23. Michaeli W, Kropp D, Heinz R, Schumacher H (2008) Foam extrusion using carbon dioxide as a blowing agent. In: Lee S, Scholz KD, Lee S (eds) Polymeric foams. CRC Press, Boca Raton

    Google Scholar 

  24. Xia T, Xi Z, Yi X, Liu T, Zhao L (2015) Melt foamability of poly(ethylene terephthalate)/ clay nanocomposites prepared by extrusion blending in the presence of pyromellitic dianhydride. Ind Eng Chem Res 54:6922–6931. https://doi.org/10.1021/acs.iecr.5b01583

    Article  CAS  Google Scholar 

  25. Liu H, Wang X, Liu W, Liu B, Zhou H (2014) Reactive modification of poly(ethylene terephthalate) and its foaming behavior. Cell Polym 33:189–212

    Article  CAS  Google Scholar 

  26. Li J, Tang S, Wu Z, Zheng A, Guan Y, Wei D (2017) Branching and cross-linking of poly(ethylene terephthalate) and its foaming properties. Polym Sci Ser B 59:164–172. https://doi.org/10.1134/S1560090417020051

    Article  CAS  Google Scholar 

  27. Coccorullo I, Di Maio L, Montesano S, Incarnato L (2009) Theoretical and experimental study of foaming process with chain extended recycled PET. Express Polym Lett 3:84–96. https://doi.org/10.3144/expresspolymlett.2009.12

    Article  CAS  Google Scholar 

  28. Xanthos M, Yilmazer U, Quintans J (2000) Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming. Polym Eng Sci 40:554–566. https://doi.org/10.1002/pen.11186

    Article  CAS  Google Scholar 

  29. Xanthos M, Wan C, Dhavalikar R, Karayannidis GP, Bikiaris DN (2004) Identification of rheological and structural characteristics of foamable poly(ethylene terephthalate) by reactive extrusion. Polym Int 53:1161–1168. https://doi.org/10.1002/pi.1526

    Article  CAS  Google Scholar 

  30. Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1:245–251. https://doi.org/10.3144/expresspolymlett.2007.37

    Article  CAS  Google Scholar 

  31. Bocz K, Tábi T, Vadas D, Sauceau M, Fages J, Marosi G (2016) Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion. Express Polym Lett 10:771–779. https://doi.org/10.3144/expresspolymlett.2016.71

    Article  CAS  Google Scholar 

  32. Vassiliou AA, Chrissafis K, Bikiaris DN (2010) In situ prepared PET nanocomposites: effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics. Thermochim Acta 500:21–29. https://doi.org/10.1016/j.tca.2009.12.005

    Article  CAS  Google Scholar 

  33. Vadas D, Igricz T, Sarazin J, Bourbigot S, Marosi G, Bocz K (2018) Flame retardancy of microcellular poly(lactic acid) foams prepared by supercritical CO2-assisted extrusion. Polym Degrad Stab 153:100–108. https://doi.org/10.1016/j.polymdegradstab.2018.04.021

    Article  CAS  Google Scholar 

  34. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) The role of crystalline, mobile amorphous rigid amorphous fractions in the performance of recycled poly(ethylene terephthalate) (PET). Polym Degrad Stab 97:98–107. https://doi.org/10.1016/j.polymdegradstab.2011.10.008

    Article  CAS  Google Scholar 

  35. Osswald TA, Rudolph N (1978) Polymer rheology fundamentals and application. Hanser Publishers, Munich

    Google Scholar 

  36. Rao MA (2014) Rheology of fluid, semisolid, and solid foods. Springer, New York

    Book  Google Scholar 

  37. Xanthos M, Patel A, Dey S, Dagli SS, Jacob C, Nosker TJ, Renfree RW (1994) Compatibilization of refined commingled post-consumer plastics. Adv Polym Technol 13:231–239. https://doi.org/10.1002/adv.1994.060130306

    Article  CAS  Google Scholar 

  38. Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Structure and rheology recycled PET modified by reactive extrusion. Polymer 41:6825–6831. https://doi.org/10.1016/S0032-3861(00)00032-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was realized in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 “National Excellence Program - Elaborating and operating an inland student and researcher personal support system”. The project was subsidized by the European Union and co-financed by the European Social Fund. The research was financially supported by the Hungarian Scientific Research Fund (OTKA K112644, PD121171 and FK 128352) and by the ÚNKP-18-4-BME-138 New National Excellence Program of the Ministry of Human Capacities. The project was funded by the National Research, Development and Innovation Fund of Hungary in the frame of NVKP 16-1-2016-0012, GINOP-2.2.1-15-2016-00015 and FIEK_16-1-2016-0007 projects. Support of grant BME FIKP-VÍZ by EMMI is kindly acknowledged. K. Bocz is thankful for the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Ronkay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocz, K., Molnár, B., Marosi, G. et al. Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension. J Polym Environ 27, 343–351 (2019). https://doi.org/10.1007/s10924-018-1351-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1351-z

Keywords

Navigation