Skip to main content
Log in

In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study reports on the use of low-functionality epoxy-based styrene–acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBV-b-PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348

    Article  CAS  Google Scholar 

  3. Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421

    Article  CAS  Google Scholar 

  4. Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395

    Article  CAS  Google Scholar 

  5. Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219

    Article  Google Scholar 

  6. McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296

    Article  CAS  PubMed  Google Scholar 

  7. Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361

    Article  CAS  Google Scholar 

  8. Vink ETH, Davies S (2015) Ind Biotechnol 11:167

    Article  CAS  Google Scholar 

  9. John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759

    Article  CAS  Google Scholar 

  10. Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493

    Article  CAS  Google Scholar 

  11. Garlotta D (2001) J Polym Environ 9:63

    Article  CAS  Google Scholar 

  12. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  13. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878

    Article  CAS  Google Scholar 

  14. Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402

    Article  CAS  Google Scholar 

  15. Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81

    Article  CAS  Google Scholar 

  16. Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91

    Google Scholar 

  17. Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199

    Article  CAS  Google Scholar 

  18. Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102

    Article  CAS  Google Scholar 

  19. Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336

    Article  CAS  Google Scholar 

  20. Porter RS, Wang L-H (1992) Polymer 33(10): 2019

    Article  CAS  Google Scholar 

  21. Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707

    Article  CAS  Google Scholar 

  22. Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726

    Article  CAS  Google Scholar 

  23. Ryan AJ (2002) Nat Mater 1:8

    Article  CAS  PubMed  Google Scholar 

  24. Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756

    Article  CAS  Google Scholar 

  25. Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226

    Article  CAS  Google Scholar 

  26. Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1

    Article  CAS  Google Scholar 

  27. Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179

    Article  CAS  PubMed  Google Scholar 

  28. Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546

    Article  CAS  Google Scholar 

  29. Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929

    Article  CAS  Google Scholar 

  30. Sundararaj U, Macosko CW (1995) Macromolecules 28:2647

    Article  CAS  Google Scholar 

  31. Milner ST, Xi H (1996) J Rheol 40:663

    Article  CAS  Google Scholar 

  32. Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227

    Article  CAS  Google Scholar 

  33. Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693

    Article  CAS  Google Scholar 

  34. Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172

    Article  CAS  Google Scholar 

  35. Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9

    CAS  Google Scholar 

  36. Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418

    Article  CAS  Google Scholar 

  37. Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813

    Article  CAS  Google Scholar 

  38. Ojijo V, Ray SS (2015) Polymer 80:1

    Article  CAS  Google Scholar 

  39. Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678

  40. Utracki LA (2002) Can J Chem Eng 80:1008

    Article  CAS  Google Scholar 

  41. Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898

    Article  CAS  Google Scholar 

  42. Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604

    Article  CAS  Google Scholar 

  43. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27

    Article  CAS  Google Scholar 

  44. Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774

    Article  CAS  Google Scholar 

  45. Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275

    Article  CAS  Google Scholar 

  46. Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299

    Article  CAS  Google Scholar 

  47. Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23

    Article  CAS  Google Scholar 

  48. Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914

    Article  CAS  Google Scholar 

  49. Miyata T, Masuko T (1998) Polymer 39:5515

    Article  CAS  Google Scholar 

  50. Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189

    Article  CAS  Google Scholar 

  51. Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576

    Article  CAS  Google Scholar 

  52. Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648

    Article  CAS  Google Scholar 

  53. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552

    Article  CAS  Google Scholar 

  54. Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573

    Article  CAS  Google Scholar 

  55. Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115

    Article  CAS  Google Scholar 

  56. Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091

    Article  CAS  PubMed  Google Scholar 

  57. Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250

    Article  CAS  Google Scholar 

  58. Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741

    Article  CAS  Google Scholar 

  59. Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790

    Article  CAS  Google Scholar 

  60. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235

    Article  CAS  Google Scholar 

  61. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133

    Article  CAS  Google Scholar 

  62. Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 1

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Torres-Giner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiles-Carrillo, L., Montanes, N., Lagaron, J.M. et al. In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. J Polym Environ 27, 84–96 (2019). https://doi.org/10.1007/s10924-018-1324-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1324-2

Keywords

Navigation