Skip to main content
Log in

Improving the Rheological and Mechanical Properties of Recycled PET Modified by Macromolecular Chain Extenders Synthesized by Controlled Radical Polymerization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, a series of reactive copolymers of glycidyl methacrylate (G), styrene (S) and acrylonitrile (AN), were synthesized through reversible addition-fragmentation chain transfer polymerization and evaluated as macromolecular chain extenders in reactive extrusion of recycled poly(ethylene terephthalate) (rPET). The results obtained indicate that the addition of the reactive copolymers as chain extenders modifies the chain conformation in rPET causing low crystallization rate and low crystallinity. The physical and rheological properties (melt flow and intrinsic viscosity) of chain-extended rPET improved, rendering better processability. rPET modified with polymeric chain extenders shows improved rheological properties (complex viscosity, storage and loss modulus) and also displays higher elongation at break and impact properties as the GMA content in the chain extenders increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Srithep Y, Javadi A, Pilla S, Turng SL, Gong S, Clemons C, Peng J (2011) Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate). J Polym Eng Sci 51:1023–1032

    Article  CAS  Google Scholar 

  2. George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate). Ind Eng Chem Res 53:14185–14198

    Article  CAS  Google Scholar 

  3. Farahat MS, Abdel-Azim AA, Abdel-Raowf ME (2000) Modified unsaturated polyester resins synthesized from poly(ethylene terephthalate) waste, 1. Synthesis and curing characteristics. Macromol Mater Eng 283:1–6

    Article  CAS  Google Scholar 

  4. Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly(ethylene terephthalate)(pet) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–394

    Article  CAS  Google Scholar 

  5. Goje AS, Mishra S (2003) Chemical kinetics, simulation, and thermodynamics of glycolytic depolymerization of poly(ethylene terephthalate) waste with catalyst optimization for recycling of value added monomeric products. Macromol Mater Eng 288:326–336

    Article  CAS  Google Scholar 

  6. Yamaye M, Hashime M, Yamamoto K, Kosugi K (2002) Chemical recycling of poly(ethylene terephthalate). 2. Preparation of terephthalohydroxamic acid and terephthalohydrazide. Ind Eng Chem Res 41:3993–3998

    Article  CAS  Google Scholar 

  7. Scheirs J (1998) Polymer recycling: science, technology and applications. Wiley, London

    Google Scholar 

  8. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477

    Article  CAS  Google Scholar 

  9. Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60

    Article  CAS  Google Scholar 

  10. Villalobos M, Awojulu A, T (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Greeley Energy 31:3227–3234

    Article  CAS  Google Scholar 

  11. Coltelli MB, Maggiore ID, Savi S, Aglietto M, Ciardelli F (2005) Modified styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer as compatibiliser precursor in polyethylene/poly(ethylene terephthalate) blends. Polym Degrad Stab 90:211–223

    Article  CAS  Google Scholar 

  12. Coltelli MB, Aglietto M, Ciardelli F (2008) Influence of the transesterification catalyst structure on the reactive compatibilization and properties of poly(ethylene terephthalate) (PET)/dibutyl succinate functionalized poly(ethylene) blends. Eur Polym J 44:1512–1524

    Article  CAS  Google Scholar 

  13. Coltelli MB, Bianchi S, Savi S, Liuzzo V, Aglietto M (2003) Metal catalysis to improve compatibility at PO/PET blends interfaces. Macromol Symp 204:227–236

    Article  CAS  Google Scholar 

  14. Coltelli MB, Savi S (2004) A model study of Ti(OBu)4 catalyzed reactions during reactive blending of polyethylene (PE) and poly(ethylene terephthalate) (PET). Macromol Macromol Mater Eng 289:400–412

    Article  CAS  Google Scholar 

  15. . Torres N, Robin J, Boutevin B (2001) Chemical modification of virgin and recycled poly(ethylene terephthalate) by adding of chain extenders during processing J. Appl Polym Sci 79:1816–1824

    Article  CAS  Google Scholar 

  16. Xanthos M (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters. Wiley–VCH, Weinheim

    Google Scholar 

  17. Xanthos M, Young MW, Karayannidis GP, Bikiaris DN (2001) Reactive modification of polyethylene terephthalate with polyepoxides. Polym Eng Sci 41:643–655

    Article  CAS  Google Scholar 

  18. Japon S, Boogh L, Leterrier Y, Manson JA (2000) Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41:5809–5818

    Article  CAS  Google Scholar 

  19. Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  20. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–430

    Article  CAS  Google Scholar 

  21. Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process: a third update. Aust J Chem 65:985–1036

    Article  CAS  Google Scholar 

  22. Bai R, You Y, Pan Y (2001) 60Co γ-irradiation-initiated “living” free-radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Chem Phys Rapid Commun 22:315–319

    Article  CAS  Google Scholar 

  23. American Society for Testing and Materials (1994) ASTM D 2857: standard test method for dilute solution viscosity of polymers. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  24. Sanchéz NB, Dias ML, Pacheco E (2005) Comparative techniques for molecular weight evaluation of poly(ethylene terphthalate) (PET). Polym Test 24:688–693

    Article  CAS  Google Scholar 

  25. Fakirov S (1994) Handbook of thermoplastics. Marcel Dekker, New York

    Google Scholar 

  26. Jabarin SA (1987) Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J Appl Polym Sci 34:85–96

    Article  CAS  Google Scholar 

  27. Ebeling B, Vana P (2011) Multiblock copolymers of styrene and butyl acrylate via polytrithiocarbonate-mediated RAFT polymerization. Polymers 3:719–739

    Article  CAS  Google Scholar 

  28. Wang W, Hutchinson RA (2008) PLP/SEC/NMR study of free radical copolymerization of styrene and glycidyl methacrylate. Macromolecules 41:9011–9018

    Article  CAS  Google Scholar 

  29. Brar AS, Pradhan DR (2003) Investigation of microstructure of the acrylonitrile-styrene-glycidyl methacrylate terpolymers by 1D and 2D NMR spectroscopy. J Appl Polym Sci 89:1779–1790

    Article  CAS  Google Scholar 

  30. Shenoy AV, Saini DR (1986) Melt flow index: more than just a quality control parameter. Part I. Adv Polym Technol 6:1–58

    Article  CAS  Google Scholar 

  31. Nascimento CR, Azuma Ch, Bretas R, Farah M, Dias ML (2010) Chain extension reaction in solid-state polymerization of recycled PET: the influence of 2,2-Bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci 115:3177–3188

    Article  CAS  Google Scholar 

  32. Turner SR (2004) Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol. J Polym Sci Part A: Polym Chem 42:5847–5852

    Article  CAS  Google Scholar 

  33. Härth M, Kaschta J, Schubert DW (2014) Shear and elongational flow properties of long-chain branched poly(ethylene terephthalates) and correlations to their molecular structure. Macromolecules 47:4471–4478

    Article  CAS  Google Scholar 

  34. Nguyen QT, Japon S, Luciani A, Leterrier Y, Manson JA (2001) Molecular characterization and rheological properties of modified poly (ethylene terephthalate) obtained by reactive extrusion. Polym Eng Sci 41:1299–1309

    Article  Google Scholar 

  35. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  36. Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New York

    Google Scholar 

  37. Xanthos M, Yilmazer U, Dey SK, Quintans J (2000) Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming. Polym Eng Sci 40:554–566

    Article  CAS  Google Scholar 

  38. Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  39. Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II: classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  40. Yang Z, Xin Ch, Mughal W, Li X, He Y (2017) High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. J Appl Polym Sci 135:45805–45814

    Article  CAS  Google Scholar 

  41. Chanda M, Roy SK (2006) Plastics technology handbook, 2d. edn. CRC Press, Boca Raton

    Google Scholar 

  42. Peacock AJ (2000) Handbook of polyethylene: structures: properties, and applications. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  43. Pegoretti A, Penati A (2004) Recycled poly(ethylene terephthalate) and its short glass fibres composites: effect of hygrothermal aging on the thermo-mechanical behavior. Polymer 45:7995–8004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support of Francisco Méndez and Luis Reyes from Resirene Applications Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Benvenuta Tapia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenuta Tapia, J.J., Hernández Valdez, M., Cerna Cortez, J. et al. Improving the Rheological and Mechanical Properties of Recycled PET Modified by Macromolecular Chain Extenders Synthesized by Controlled Radical Polymerization. J Polym Environ 26, 4221–4232 (2018). https://doi.org/10.1007/s10924-018-1294-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1294-4

Keywords

Navigation