Skip to main content
Log in

Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present manuscript deals with the reuse and valorisation of agricultural wastes and by-products (namely, hemp fibres and rice husk particles) to produce fire retardant fibreboards and particleboards for applications in biobuilding. Since fire retardancy is one of the most important challenges, a detailed study on the thermal and flame retardant properties of the above materials assembled using starch as the binder and different ammonium dihydrogen phosphate contents as fire retardant agents, is proposed. The combustion properties have been investigated in developing fire conditions, employing a radiating heat flux of 35 kW/m2 generated by a cone calorimeter. An optimised formulation able to make both fibreboards and particleboards not ignitable has been found and is predicted to be “A2/B” class in the European fire classification for building products. The resultant materials have proven to undergo pyrolysis and not to burn, favouring the formation of a dense and consistent final residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satyanarayana K, Ramos L, Wypych F (2005) Biotechnology in energy management, 2, p 583

  2. Evans W, Isaac D, Suddell B, Crosky A, Natural fibres and their composites: a global perspective, at: Proceedings of the Risø International Symposium on Materials Science, 1

  3. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Prog Polym Sci 34:982

    Article  CAS  Google Scholar 

  4. Herrmann AS, Nickel J, Riedel U (1998) Polym Degrad Stab 59:251

    Article  CAS  Google Scholar 

  5. John MJ, Thomas S (2008) Carbohyd Polym 71:343

    Article  CAS  Google Scholar 

  6. Koronis G, Silva A, Fontul M (2013) Compos Part B: Eng 44:120

    Article  CAS  Google Scholar 

  7. Kozlowski R, Mieleniak B, New trends in the utilization of by products of fibre crops residue in pulp and paper industry, building engineering, automotive industry and interior furnishing, at: Proceedings from the Third International Symposium on Natural Polymers and Composites, Sao Paulo, 504

  8. Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Constr Build Mater 38:872

    Article  Google Scholar 

  9. Padkho N (2012) Procedia Eng 32:1113

    Article  Google Scholar 

  10. Alvarez VA, Vazquez A (2004) Polym Degrad Stab 84:13

    Article  CAS  Google Scholar 

  11. Chapple S, Anandjiwala R (2010) J Thermoplast Compos Mater 23:871

    Article  CAS  Google Scholar 

  12. Freivalde L, Kukle S, Andzs M, Buksans E, Gravitis J (2014) Composites B Eng 67:510

    Article  CAS  Google Scholar 

  13. Palumbo M, Formosa J, Lacasta AM (2015) Constr Build Mater 79:34

    Article  Google Scholar 

  14. Gallo E, Sanchez-Olivares G, Schartel B (2013) Polimery 58:395

    Article  CAS  Google Scholar 

  15. Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Polym Degrad Stab 64:523

    Article  CAS  Google Scholar 

  16. Alongi J, Malucelli G (2015) Rsc Adv 5:24239

    Article  CAS  Google Scholar 

  17. Lowden LA, Hull TR (2013) Fire Sci Rev 2:1

    Article  CAS  Google Scholar 

  18. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424

    Article  CAS  Google Scholar 

  19. Suardana NPG, Ku MS, Lim JK (2011) Mater Des 32:1990

    Article  CAS  Google Scholar 

  20. Bagga SL, Jain RK, Gur IS, Bhatnagar HL (1990) Polym Int 22:107

    CAS  Google Scholar 

  21. Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2014) Polym Int 63:1665

    Article  CAS  Google Scholar 

  22. Battegazzore D, Alongi J, Frache A (2014) J Polym Environ 22:88

    Article  CAS  Google Scholar 

  23. Faludi G, Hári J, Renner K, Móczó J, Pukánszky B (2013) Compos Sci Technol 77:67

    Article  CAS  Google Scholar 

  24. Huda M, Drzal L, Misra M, Mohanty A (2006) J Appl Polym Sci 102:4856

    Article  CAS  Google Scholar 

  25. Bogren KM, Gamstedt EK, Neagu RC, AÅkerholm M, LindstroÖm M (2006) J Thermoplast Compos Mater 19:613

    Article  CAS  Google Scholar 

  26. Kozlowski R, Mieleniak B, Przepiera A (1995) Zemedelska Technika-UZPI (Czech Republic)

  27. Melo RRd, Stangerlin DM, Santana RRC, Pedrosa TD (2014) Mater Res 17:682

    Article  Google Scholar 

  28. Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Lignocellulosic-plastic composites, p 23

  29. Pickering KL, Efendy MGA, Le TM (2016) Compos A: Appl Sci Manufac 83:98

    Article  CAS  Google Scholar 

  30. Kalia S, Kaith BS, Kaur I (2009) Polymer Eng Sci 49:1253

    Article  CAS  Google Scholar 

  31. Carus M, Karst S, Kauffmann A, Hobson J, Bertucelli S (2013) European Industrial Hemp Association (EIHA), Hürth (Germany)

  32. Kozłowski R, Władyka-Przybylak M (2008) Polym Adv Technol 19:446

    Article  CAS  Google Scholar 

  33. Battegazzore D, Alongi J, Frache A, Wagberg L, Carosio F (2017) Mater Today Commun 13:92

    Article  CAS  Google Scholar 

  34. Ciannamea EM, Stefani PM, Ruseckaite RA (2010) Bioresour Technol 101:818

    Article  CAS  PubMed  Google Scholar 

  35. Temitope AK (2015) Ind Eng Manag 04

  36. Gaan S, Sun G (2007) Polym Degrad Stab 92:968

    Article  CAS  Google Scholar 

  37. Östman BA-L, Mikkola E (2006) Holz als Roh-und Werkstoff 64:327

    Article  Google Scholar 

  38. Bilal A, Lin RJ, Jayaraman K (2014) J Reinf Plast Compos 33:2021

    Article  CAS  Google Scholar 

  39. Battegazzore D, Alongi J, Duraccio D, Frache A (2018) J Polym Environ 26:1652

    Article  CAS  Google Scholar 

  40. in. ANSI A208.1 standard

  41. in. CSN EN 312 standard

  42. in. ISO 5660 standard

  43. in EN, BS 13823 British Standards Institution, London, UK, 2002

  44. Hakkarainen T (2001) J Fire Sci 19:284

    Article  CAS  Google Scholar 

  45. Kokkala MA, Thomas PH, Karlsson B (1993) Fire Mater 17:209

    Article  Google Scholar 

  46. Alongi J, Malucelli G (2015) React Mech Therm Anal Adv Mater 301

  47. Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4:54703

    Article  CAS  Google Scholar 

  48. Schartel B, Pawlowski KH, Lyon RE (2007) Thermochim Acta 462:1

    Article  CAS  Google Scholar 

  49. Alongi J, Cuttica F, Carosio F, Bourbigot S (2015) Cellulose 22:3477

    Article  CAS  Google Scholar 

  50. Schartel B, Hull TR (2007) Fire Mater 31:327

    Article  CAS  Google Scholar 

  51. Hapuarachchi TD, Ren G, Fan M, Hogg PJ, Peijs T (2007) Appl Compos Mater 14:251

    Article  CAS  Google Scholar 

  52. Das O, Kim NK, Hedenqvist MS, Lin RJT, Sarmah AK, Bhattacharyya D (2018) Environ Manag 1–11

  53. Battegazzore D, Alongi J, Fontaine G, Frache A, Bourbigot S, Malucelli G (2015) RSC Adv 5:39424

    Article  CAS  Google Scholar 

  54. Boccarusso L, Carrino L, Durante M, Formisano A, Langella A, Minutolo FM (2016) Compos B: Eng 89:117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mr. Fabio Cuttica for cone calorimetry tests, Ms. Giuseppina Iacono for SEM analyses and Prof. Giovanni Camino for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Battegazzore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battegazzore, D., Alongi, J., Duraccio, D. et al. Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards. J Polym Environ 26, 3731–3744 (2018). https://doi.org/10.1007/s10924-018-1250-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1250-3

Keywords

Navigation