Skip to main content

Advertisement

Log in

Iron Nanoparticles α-Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synthesis of metal nanoparticles has become a matter of great interest in recent years for overcoming various challenges such as infectious diseases and environmental pollutants. In the present study, a green synthesis of iron nanoparticles (FeNP) was performed using aqueous leaf extract of Corchorus olitorius as a reducing and capping agent. Chitin nanoparticles (CNP) were prepared from shells of Penaeus semisulcatus and used for the preparation of iron/chitin nanocomposite. The structure and properties of the synthesized nanoparticles were investigated by UV–Vis spectroscopy, TEM, EDX, XRD and FTIR analyses and then evaluated for their antimicrobial, dyes degradation and heavy metals adsorption activities. FeNP/CNP nanocomposite showed enhanced antimicrobial activity as compared to that of FeNP and CNP alone. A great degradation had been confirmed upon treatment of dyes with FeNP/CNP nanocomposite. It reached 95% for methyl orange at 150 min. Furthermore, the removal efficiency of heavy metals increased with increasing adsorbents concentrations. FeNP/CNP nanocomposite exhibited higher heavy metals removal efficiency than FeNP and in a shorter time. It caused removal percentages of 98.9, 94.2 and 90.3% for Cr3+, Cd2+ and Ni2+, respectively at 30 min. The results confirmed that incorporation of FeNP into CNP improves the properties of FeNP and can be used as a promising strategy to be used as biocompatible antimicrobial and bioremediation agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lida H, Takayanagi K, Nakanishi T, Osaka T (2007) J Colloid Interface Sci 314:274–280

    Article  CAS  Google Scholar 

  2. Shahwan T, Abu Sirriah S, Nairat M, Boyac E, Eroglu A, Scott T, Hallam K (2011) Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  3. Xu C, Sun S (2013) Adv Drug Deliv Rev 65:732–743

    Article  CAS  PubMed  Google Scholar 

  4. Dubey SP, Lahtinen M, Sillanpää M (2010) Colloids Surf A 364:34–41

    Article  CAS  Google Scholar 

  5. Vidhu VK, Philip D (2014) Micron 56:54–62

    Article  CAS  PubMed  Google Scholar 

  6. Nahar MK, Zakaria Z, Hashim U, Bari UM (2015) Adv Mater Res 1109:30–34

    Article  Google Scholar 

  7. Sun YP, Li XQ, Zhang WX, Wang HP (2007) Colloids Surf A 308:60–66

    Article  CAS  Google Scholar 

  8. Badry MD, Wahba MA, Khaled RK, Farghali AA (2015) Mid E J Appl Sci 5(4):940–944

    Google Scholar 

  9. Lee CR, Cho IH, Jeong BC, Lee SH (2013) Int J Environ Res Pub Health 10(9):4274–4305

    Article  CAS  Google Scholar 

  10. Manyasree D, Kiranmayi P, Kumar R (2016) Ind Am J Pharm Res 6:5992–5997

    CAS  Google Scholar 

  11. Ahmed MA, Ali SM, El-Dek SI, Galal A (2013) Mater Sci Eng B 178:744–751

    Article  CAS  Google Scholar 

  12. Badruddoza AZ, Shawon ZB, Tay WJ, Hidajat K, Uddin MS (2013) Carbohydr Polym 91:322–332

    Article  CAS  PubMed  Google Scholar 

  13. Gomez-Pastora J, Bringas E, Ortiz I (2014) Chem Eng J 256:187–204

    Article  CAS  Google Scholar 

  14. El-Rafie HM, Abd El-Aziz SM, Zahran MK (2016) Der Pharm Lett 8(19):156–164

    CAS  Google Scholar 

  15. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Suib SL (2011) Langmuir 27(1):264–271

    Article  CAS  PubMed  Google Scholar 

  16. Solairaj D, Palanivel R, Pappu S (2015) J Adv Res 7(1):113–124

    Google Scholar 

  17. Goodrich JD, Winter WT (2007) Biomacromol 8:252–257

    Article  CAS  Google Scholar 

  18. Solairaj D, Rameshthangam P (2017) J Polym Environ 25:435–452

    Article  CAS  Google Scholar 

  19. Perez C, Paul M, Bazerque P (1990) Acta Biol Med Exp 15:113–115

    Google Scholar 

  20. Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C (2008) J Mol Catal A 281:192–199

    Article  CAS  Google Scholar 

  21. Lowry OH, Rosebrough N, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Miller G (1959) Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  23. Chen CZ, Cooper SL (2002) Biomaterials 23(16):3359–3368

    Article  CAS  PubMed  Google Scholar 

  24. Al-Saad KA, Amr MA, Hadi DT, Arar RS, AL-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC (2012) Arab J Nucl Sci Appl 45(2):335–346

    Google Scholar 

  25. Song JY, Kim BS (2009) Bioprocess Biosyst Eng 32:79–84

    Article  CAS  PubMed  Google Scholar 

  26. Hamzah RU, Jigam AA, Makun HA, Egwim EC (2014) Asian J Basis Appl Sci 1(1):1–14

    Google Scholar 

  27. Ali-Komi D, Hamblin MR (2016) Int J Adv Res 3:411–427

    Google Scholar 

  28. Wysokowski M, Motylenko M, Walter J (2014) RSC Adv 4:61743–61752

    Article  CAS  Google Scholar 

  29. Einbu A, Varum KM (2007) Biomacromolecules 8(1):309–314

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Sci Total Environ 466:210–213

    Article  CAS  PubMed  Google Scholar 

  31. Kavitha AL, Subashini A (2015) Int J Adv Chem Sci Appl 3:20–23

    Google Scholar 

  32. Vidya C, Shilpa H, Chandraprabha M, Lourdu A, Indu V, Aayushi J, Kokil B (2013) Int J Curr Eng Technol 1:2277–4106

    Google Scholar 

  33. Sajomsang W, Gonil P (2010) Mater Sci Eng C 30:357–363

    Article  CAS  Google Scholar 

  34. Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Hattori H, Matsui T (2013) J Nanomat 12:49

    Google Scholar 

  35. Latha N, Gowri M (2014) Int J Sci Res 3(11):1551–1556

    Google Scholar 

  36. Salaberria AM, Fernandes SC, Diaz RH, Labidi J (2015) Carbohydr Polym 116:286–291

    Article  CAS  PubMed  Google Scholar 

  37. Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R (2010) J Mater Sci 21(2):807–813

    CAS  Google Scholar 

  38. Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandali M (2015) Bull Mat Sci 38:1533–1538

    Article  CAS  Google Scholar 

  39. Mahdy SA, Raheed QJ, Kalaichelvan PT (2012) Int J Mod Eng Res 2(1):578–581

    Google Scholar 

  40. Prabhu YT, Venkateswara RK, Kumari BS, Kumar VS, Pavani T (2015) Int Nano Lett 5:85–92

    Article  CAS  Google Scholar 

  41. Cai X, Zhang B, Liang Y, Zhang J, Yan Y, Chen X, Wu T (2015) Coll Surf B 1:281–289

    Article  CAS  Google Scholar 

  42. Noruzi M, Mousivand M (2015) J Appl Chem Res 9:37–50

    Google Scholar 

  43. Sunkar S, Nachiyar VC, Karunya A (2013) Res J Pharm Biol Chem Sci 4:1085–1097

    CAS  Google Scholar 

  44. Rahman N, Abedin Z, Ali HM (2014) Am J Environ Sci 10(2):157–163

    Article  CAS  Google Scholar 

  45. Kannan M, Rajarathinam K, Dheeba B, Nageshwari K, Kannan K (2015) Int J Pharm Pharm Sci 7:2 225–229

    Google Scholar 

  46. Badmapriya D, Asharani IV (2016) Int J ChemTech Res 9(6):409–416

    CAS  Google Scholar 

  47. Saiz J, Bringas E, Ortiz I (2014) J Chem Technol Biot 89:909–918

    Article  CAS  Google Scholar 

  48. Gupta VK, Nayak A (2012) Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  49. Al-Dokheily ME, Sadoon AJ (2015) Chem Proc Eng Res 34:38–50

    Google Scholar 

  50. Seyedi SM, Rabiee H, Shahabadi SM, Borghei SM (2017) Clean Soil Air Water 45(3):1–9

    Article  CAS  Google Scholar 

  51. Savina IN, English CJ, Whitby RL, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) J Hazard Mat 192:1002–1008

    Article  CAS  Google Scholar 

  52. Fang Z, Qiu X, Huang R, Qiu X, Li M (2011) Desalination 280:224–231

    Article  CAS  Google Scholar 

  53. Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Chem Eng Sci 64:2510–2521

    Article  CAS  Google Scholar 

  54. Kim EJ, Lee CS, Chang YY, Chang YS (2013) ACS Appl Mater Int 5:9628–9634

    Article  CAS  Google Scholar 

  55. Kyzas GZ, Deliyanni EA (2013) Molecules 18:6193–6214

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Zakaria Gomaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, E.Z. Iron Nanoparticles α-Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities. J Polym Environ 26, 3638–3654 (2018). https://doi.org/10.1007/s10924-018-1247-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1247-y

Keywords

Navigation