Skip to main content
Log in

Properties of Poly(Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choo K, Ching CY, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644–660

    Article  CAS  PubMed Central  Google Scholar 

  2. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bio-nanocomposites reinforced by cellulose nanocrystals. Chin J Polym Sci 201532:1620–1627

    Article  CAS  Google Scholar 

  3. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Opanasopit P (2012) Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J 11(2):215–222

    Article  PubMed  Google Scholar 

  4. Mahmoodi NM, Shourijeh ZM (2015) Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym 16:1861–1869

    Article  CAS  Google Scholar 

  5. Kermani AS, Esfandiary N (2016) Synthesis and characterization of new biodegradable chitosan/polyvinyl alcohol/cellulose nanocomposite. Adv Nanopart 5:18–26

    Article  CAS  Google Scholar 

  6. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO–Ag multifunctional nanosized filler. Int J Nanomed 9:1909–1917

    Article  Google Scholar 

  7. Parparita E, Natalia C, Cheaburu C (2012) Vasile. Morphological, thermal and rheological characterization of polyvinyl alcohol/chitosan blends. Cellul Chem Technol 46:571 – 581

    CAS  Google Scholar 

  8. Rescignano N, Fortunatin E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58

    Article  CAS  PubMed  Google Scholar 

  9. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014) Enhanced thermal and mechanical properties of PVA compositesformed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410

    Article  CAS  PubMed  Google Scholar 

  11. Mandal A, Chakrabarty D (2015) Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films. Carbohydr Polym 134:240–250

    Article  CAS  PubMed  Google Scholar 

  12. Panaitescu DM, Frone AN, Ghiurea M, Chiulan I (2015) Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Ind Crops Prod 70:170–177

    Article  CAS  Google Scholar 

  13. Hafdani FN, Sadhegenia NA (2011) Review on application of chitosan as a natural antimicrobial. Int J Med Health Biomed Bioeng Pharm Eng 5:2011

    Google Scholar 

  14. Pavaloiu RD, Guzun AS, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    Article  CAS  PubMed  Google Scholar 

  15. Azeredo HMC, Mattoso LHC, Bustillos RJA, Filho GC, Munford ML, Wood D, Mchugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:1

    Article  CAS  Google Scholar 

  16. Park SC, Nam JP, Kim JH, Kim YM, Nah JW, Jang MK (2015) Antimicrobial action of water-soluble β -chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci 16:7995–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rafique A, Zia KM, Zuber M, Tabasum S, Rehman S (2016) Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: a review. Int J Biol Macromol 87:141–154

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosanhydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82

    Article  CAS  PubMed  Google Scholar 

  19. Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Basic properties of oven-heat treated oil palm empty fruit bunch stalk fibers. Bioresources 11:2224–2237

    Article  CAS  Google Scholar 

  20. Nikmatin S (2012) Bionanocomposite of polypropylene reinforced cellulose nanoparticles biomass of rattan synthetic substitute composite by motorcycle. Doctoral dissertation, Bogor Agricultural Univesity, Bogor

  21. Osong SH (2014) Mechanical pulp based nano-ligno-cellulose production, characterisation and their effect on paper properties. Master thesis, Mid Sweden University, Sundsvall

  22. Kojima Y, Isa A, Kobori H, Suzuki S, Ito H, Makise R, Okamoto M (2014) Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers. Materials 7:6853–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwamoto S, Yamamoto S, Lee S-H, Ito H, Endo T (2015) Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7:6919–6929

    Article  Google Scholar 

  24. Iwamoto S, Endo T (2015T. Endo. 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83

    Article  CAS  Google Scholar 

  25. Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21(3):1573–1580

    Article  CAS  Google Scholar 

  26. Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Novel isolation of empty fruit bunch lignocellulose nanofibers using different vibration milling times-assisted multimechanical stages. Waste Biomass Valoriz 8(7):2451–2462

    Article  CAS  Google Scholar 

  27. Kang Y, Ahn Y, Lee SH, Hong JH, Ku MK, Kim H (2013) Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid. Fiber Polym 14:530–536

    Article  CAS  Google Scholar 

  28. Osong SH, Norgren S. Engstrand P, Lundberg M, Hansen P (2014) Crill: a novel technique to characterize nano – ligno – cellulose. Nord Pulp Pap Res J 29:190–194

    Article  CAS  Google Scholar 

  29. Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composite with cellulose nanofibers obtained by ultrasonication. Bioresources 6:487–512

    CAS  Google Scholar 

  30. Hu Y, Li D, Deng Q, Wang Y, Lin D (2012) Novel poly(vinyl alcohol) nanocomposites reinforced with nano cellulose fibrils isolated from plants by mechanochemical treatment. Appl Mech Mater 174–177:870–876

    Article  CAS  Google Scholar 

  31. Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L (2013) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydr Polym 97:825–836

    Article  CAS  PubMed  Google Scholar 

  32. Kakroodi AR, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. J Nanomater 2014:139

    Google Scholar 

  33. Ching YC, Rahman A, Ching KY, Sukiman NL, Chuah CH (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. Bioresouces 10:3364–3377

    CAS  Google Scholar 

  34. Sirviö JA, Honkaniemi S, Visanko M, Liimatainen H (2015) Composite films of polyvinyl alcohol and bifunctional crosslinking cellulose nanocrystals. ACS Appl Mater Interfaces 7(35):1969–19699

    Article  CAS  Google Scholar 

  35. Dehnad D, Djomeh ZE, Mirzaei H, Jafari SM, Dadashi S (2014) Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydr Polym 105:222–228

    Article  CAS  PubMed  Google Scholar 

  36. Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293

    Article  CAS  PubMed  Google Scholar 

  37. Zeid RAE, Hassan EA, Bettaieb F, Khiari R, Hassan M (2015) Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J Nanomater 16(1):172

    Google Scholar 

  38. Bajpai SK, Chand N, Ahuja S (2015) Investigation of curcumin release from chitosan/cellulose microcrystals (CMC) antimicrobial films. Int J Biol Macromol 79:40–448

    Google Scholar 

  39. Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Morphological and chemo-thermal changes of oven-heat treated oil palm empty fruit bunch fibers during dry disk milling. J Indian Acad Wood Sci 14(1):1–17

    Google Scholar 

  40. Kiziltas EE, Kiziltas A, Bollind SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydr Polym 127:381–389

    Article  CAS  PubMed  Google Scholar 

  41. Hamid SBA, Zain SK, Das R, Centi G (2015) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349 – 355

    Article  CAS  PubMed  Google Scholar 

  42. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 6:220 – 227

    Article  CAS  Google Scholar 

  43. Guimaraes M, Botarom VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA – based nanocomposites reinforced with bamboo nanofibrils. Ind Crops Prod 70:72–83

    Article  CAS  Google Scholar 

  44. Reid SM, Villalobos M, Cranston DE (2016) Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8:12247–12257

    Article  CAS  PubMed  Google Scholar 

  45. Virtanen S, Vartianen J, Setala H, Tammelin T, Vouti S (2014) Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance. RSC Adv 4(22):11343–11350

    Article  CAS  Google Scholar 

  46. Zhou YM, Fu YS, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6:794–804

    Article  CAS  Google Scholar 

  47. Tripathi S, Mehrotra GK, Dutta PK (2010) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food packaging applications. Carbohydr Polym 72:711–716

    Article  CAS  Google Scholar 

  48. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285:855 – 863

    Article  CAS  Google Scholar 

  49. Zheng H, Du Z, Yu J, Huang R, Zhang L (2007) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80:2558 – 2565

    Article  Google Scholar 

  50. Mandal A, Chakrabarty D (2015) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462 – 473

    Article  CAS  Google Scholar 

  51. Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatmentand filler loading. Fibers Polym 10:77–82

    Article  CAS  Google Scholar 

  52. Santos C, Silva CJ, Buttel Z, Guimaraes R, Pereira SB, Tamagnini P, Zille A (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592

    Article  CAS  PubMed  Google Scholar 

  53. Ostadhossein F, Mahmoudi N, Cid MG, Tamjid E, Martos FJN, Cuadrado BS, Paniza JML, Simchi A (2015) Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexibel platform for wound dressing. Materials 8:6401 – 6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li CM, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385 – 4395

    Article  CAS  Google Scholar 

  55. Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40

    Article  CAS  Google Scholar 

  56. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge to the Doctoral Programme for Outstanding Undergraduate Students (PDSU) Secretariat, because of the greatest financial support [Grant No. 180/SP2H/LT/DRM/III/2016 Directorate of Higher Education (DIKTI), Ministry of Research, Technology, and Higher Education (Menristekdikti), Republic of Indonesia]. We also thank some laboratory staffs at PT Perkebunan Kelapa Sawit Nusantara VIII, Shizuoka University, Indonesian Institute of Sciences, Forest Products Research and Development Centre, Bogor Agricultural University, Bandung Institute of Technology, Gadjah Mada University, Universitas Indonesia, and National Nuclear Energy Agency for the assistance of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achmad Solikhin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 117 KB)

Supplementary material 2 (PNG 113 KB)

Supplementary material 3 (JPG 198 KB)

Supplementary material 4 (JPG 158 KB)

Supplementary material 5 (JPG 149 KB)

Supplementary material 6 (JPG 132 KB)

Supplementary material 7 (JPG 204 KB)

Supplementary material 8 (XLSX 215 KB)

Supplementary material 9 (XLSX 227 KB)

Supplementary material 10 (XLSX 226 KB)

Supplementary material 11 (XLSX 215 KB)

Supplementary material 12 (XLSX 217 KB)

Supplementary material 13 (XLSX 229 KB)

Supplementary material 14 (PDF 38 KB)

Supplementary material 15 (PDF 40 KB)

Supplementary material 16 (PDF 38 KB)

Supplementary material 17 (PDF 39 KB)

Supplementary material 18 (PDF 39 KB)

Supplementary material 19 (PDF 37 KB)

Supplementary material 20 (PDF 39 KB)

Supplementary material 21 (PNG 29 KB)

Supplementary material 22 (PNG 30 KB)

Supplementary material 23 (PNG 29 KB)

Supplementary material 24 (PNG 29 KB)

Supplementary material 25 (PNG 30 KB)

Supplementary material 26 (PNG 30 KB)

Supplementary material 27 (PNG 31 KB)

Supplementary material 28 (BMP 4801 KB)

Supplementary material 29 (BMP 4801 KB)

Supplementary material 30 (BMP 4801 KB)

Supplementary material 31 (BMP 4801 KB)

Supplementary material 32 (BMP 4801 KB)

Supplementary material 33 (BMP 4801 KB)

Supplementary material 34 (BMP 4801 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solikhin, A., Hadi, Y.S., Massijaya, M.Y. et al. Properties of Poly(Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers. J Polym Environ 26, 3316–3333 (2018). https://doi.org/10.1007/s10924-018-1215-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1215-6

Keywords

Navigation