Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3117–3127 | Cite as

PVA Based Ternary Nanocomposites with Enhanced Properties Prepared by Using a Combination of Rice Starch Nanocrystals and Silver Nanoparticles

  • S. Vasantha Kumar
  • Johnsy George
  • V. A. Sajeevkumar
Original Paper


Ternary nanocomposite films exhibiting better properties were prepared by incorporating two different nanoparticles such as rice starch nanocrystals (RSN) and silver nanoparticles (AgNPs) together in polyvinyl alcohol (PVA) matrix at various concentrations. The morphological evaluation using atomic force microscopy revealed that the particle size of RSN nanoparticles varied from 50 to 125 nm. The nanocomposite films made using these nanoparticles were evaluated for its chemical, mechanical and thermal properties. FTIR spectra of the films revealed some specific vibrational bands of RSN along with the characteristic bands of PVA. The mechanical property analysis of nanocomposite films indicated better tensile strength and elongation properties, which can be attributed to the strong interaction of PVA with RSN and AgNPs. The thermal properties of these films were also evaluated. These ternary nanocomposites exhibited superior mechanical properties, which is very much beneficial as far as the end use applications are concerned.


Polyvinyl alcohol Starch nanocrystals Silver nanoparticles Ternary nanocomposite 



The authors thank Dr Rakesh Kumar Sharma, Director, DFRL, Mysore for his support and encouragement. The authors are also thankful to Dr S. N. Sabapathi, Head (Food Engineering & Packaging) and other staff of the division for constant motivation and help.


  1. 1.
    George J, Sabapathi SN, Siddaramaiah (2015) Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites: processing and properties. Springer, Berlin, pp 259–293Google Scholar
  2. 2.
    Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Inter J Bio Macromol 45:372–376CrossRefGoogle Scholar
  3. 3.
    Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci 14:687–691Google Scholar
  4. 4.
    Follain N, Joly C, Dole P, Bliard C (2005) Mechanical properties of starch-based materials: I—short review and complementary experimental analysis. J Appl Polym Sci 97:1783–1794CrossRefGoogle Scholar
  5. 5.
    Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746CrossRefGoogle Scholar
  6. 6.
    Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67:403–409CrossRefGoogle Scholar
  7. 7.
    Su JF, Huang Z, Liu K, Fu LL, Liu HR (2007) Mechanical properties, biodegradation and water vapor permeability of blend films of soy protein isolate and poly (vinyl alcohol) compatibilized by glycerol. Polym Bullet 58:913–921CrossRefGoogle Scholar
  8. 8.
    Siddaramaiah, Raj B, Somashekar R (2004) Structure–property relation in polyvinyl alcohol/starch composites. J Appl Polym Sci 91:630–635CrossRefGoogle Scholar
  9. 9.
    Xue P, Park KH, Tao XM, Chen W, Cheng XY (2007) Electrically conductive yarns based on PVA/carbon nanotubes. Compos Struct 78:271–277CrossRefGoogle Scholar
  10. 10.
    Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435CrossRefGoogle Scholar
  11. 11.
    Lee BO, Woo WJ, Kim MS (2001) EMI shielding effectiveness of carbon nanofiber filled poly (vinyl alcohol) coating materials. Macromol Mater Eng 286:114–118CrossRefGoogle Scholar
  12. 12.
    Yu YH, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly(vinyl alcohol) clay nanocomposite materials. Polymer 44:3553–3560CrossRefGoogle Scholar
  13. 13.
    George J, Bawa AS, Siddaramiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Advanc Mater Res 123:383–386CrossRefGoogle Scholar
  14. 14.
    Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanoparticles and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17CrossRefGoogle Scholar
  15. 15.
    Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Progr Polym Sci 33:191–269CrossRefGoogle Scholar
  16. 16.
    Suzuki T, Chiba A, Yarno T (1997) Interpretation of small angle X-ray scattering from starch on the basis of fractals. Carbohydr Polym 34:357–363CrossRefGoogle Scholar
  17. 17.
    Jenkins PJ, Donald AM (1997) The effect of acid hydrolyis on native starch granule structure. Starch–Stärke 49:262–267CrossRefGoogle Scholar
  18. 18.
    Lin N, Huang J, Chang PR, Anderson DP, Yu J (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J Nanomater 2011:20Google Scholar
  19. 19.
    Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromol 4:1198–1202CrossRefGoogle Scholar
  20. 20.
    Wang Y, Zhang L (2008) High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals. J Nanosci Nanotech 8:5831–5838CrossRefGoogle Scholar
  21. 21.
    Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79:731–737CrossRefGoogle Scholar
  22. 22.
    Bouthegourd E, Rajisha KR, Kalarical N, Saiter JM, Thomas S (2011) Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater Lett 65:3615–3617CrossRefGoogle Scholar
  23. 23.
    Zheng H, Ai F, Chang PR, Huang J, Dufresne A (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 30:474–480CrossRefGoogle Scholar
  24. 24.
    Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38:3783–3792CrossRefGoogle Scholar
  25. 25.
    George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRefPubMedGoogle Scholar
  26. 26.
    Sodi NS, Singh N (2003) Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem 80:99–108CrossRefGoogle Scholar
  27. 27.
    Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5:1545–1551CrossRefGoogle Scholar
  28. 28.
    Williams VR, Wu WT, Tasi HY, Bates HG (1958) Varietal differences in amylose content of rice starch. J Agri Food Chem 6:47–48CrossRefGoogle Scholar
  29. 29.
    Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA (2012) Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties: a review. Compre Rev Food Sci Food Saf 11:417–436CrossRefGoogle Scholar
  30. 30.
    Lopez Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89:761–768CrossRefPubMedGoogle Scholar
  31. 31.
    Puchongkavarin H, Bergthaller W, Shobsngob S, Varavinit S (2003) Characterization and utilization of acid-modified rice starches for use in pharmaceutical tablet compression. Starch/Starke 55:464–475CrossRefGoogle Scholar
  32. 32.
    McGrance SJ, Cornell HJ, Rix CJ (1998) A simple and rapid colorimetric method for the determination of amylose in starch products. Starch-Stärke 50:158–163CrossRefGoogle Scholar
  33. 33.
    Gong B, Liu W, Tan H, Yu D, Song Z, Lucia LA (2016) Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydr Polym 151:666–675CrossRefPubMedGoogle Scholar
  34. 34.
    Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231CrossRefGoogle Scholar
  35. 35.
    Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47:245–252CrossRefGoogle Scholar
  36. 36.
    Ramaraj B (2007) Crosslinked poly(vinyl alcohol) and starch composite films: II—physicomechanical, thermal properties and swelling studies. J Appl Polym Sci 103:909–916CrossRefGoogle Scholar
  37. 37.
    George J, Sajeevkumar VA, Ramana KV, Sabapathy SN, Siddaramaiah (2012) Augmented properties of PVA hybrid nanocomposites containing cellulose nanoparticles and silver nanoparticles. J Mater Chem 22:22433–22439CrossRefGoogle Scholar
  38. 38.
    Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071CrossRefGoogle Scholar
  39. 39.
    Sin LT, Rahman WA, Rahmat AR, Mokhtar M (2011) Determination of thermal stability and activation energy of polyvinyl alcohol–cassava starch blends. Carbohydr Polym 83:303–305CrossRefGoogle Scholar
  40. 40.
    Bershtein VA, Gunko VM, Egorova LM, Wang Z, Illsley M, Voronin EF, Prikhodko GP, Yakushev PN, Leboda R, Skubiszewska-Zieba J, Mikhalovsky SV (2012) Dynamics, thermal behaviour and elastic properties of thin films of poly(vinyl alcohol) nanocomposites. RSC Adv 2:1424–1431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Vasantha Kumar
    • 1
  • Johnsy George
    • 1
  • V. A. Sajeevkumar
    • 1
  1. 1.Defence Food Research LaboratoryMysoreIndia

Personalised recommendations