Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3069–3085 | Cite as

Glutaraldehyde as Ambient Temperature Crosslinking Agent of Latex Films from Natural Rubber Grafted with Poly(diacetone acrylamide)

  • Bencha Thongnuanchan
  • Rattanawadee Ninjan
  • Ekwipoo Kalkornsurapranee
  • Natinee Lopattananon
  • Charoen Nakason
Original Paper
  • 43 Downloads

Abstract

The concept of using glutaraldehyde (GTA) to crosslink natural rubber (NR) particles bearing diacetone acrylamide (DAAM) functional groups during film formation was investigated in the present work. The primary advantage of this curing system is that it is feasible under ambient conditions, which can lower operating costs of the curing process. Graft copolymers of NR and poly(diacetone acrylamide) prepared with 5 wt% of DAAM (NR–g–PDAAM5) were synthesized by seeded emulsion polymerization at 50 °C. Then, the tensile properties were measured for cast films formed from NR–g–PDAAM5 latex in the absence and presence of GTA. The results revealed increased tensile strength of the NR–g–PDAAM5 film, when GTA was added into the latex prior to film casting. The crosslinking of NR–g–PDAAM5 latex film by reaction with GTA, after film casting, was also investigated using attenuated total reflection Fourier transform infrared (ATR–FTIR) and dynamic mechanical thermal analysis (DMTA). ATR–FTIR analysis demonstrated that crosslinking reactions formed conjugated C=C double bonds between the active carbonyl groups of DAAM and GTA. The complementary use of DMTA also corroborated that crosslinking reactions took place involving the grafted PDAAM chains on the NR particles. This was evidenced by a clear shift towards higher temperatures of the tan δ peak, corresponding to the Tg of NR–g–PDAAM phase, when GTA was incorporated into the NR–g–PDAAM5 latex before film formation. Additionally, a noticeable increase in thermal stability of the NR–g–PDAAM5 film was also observed with added GTA. Hence, it can be concluded that GTA is an efficient room-temperature crosslinker for NR particles functionalized with DAAM. This curing system can also be considered an alternative, simple, and inexpensive method for curing NR latex compounds, as only one component (GTA) is required in the curing process.

Keywords

Graft copolymers Natural rubber Diacetone acrylamide Glutaraldehyde 

Notes

Acknowledgements

This work was supported by the Research Fund of Prince of Songkla University, SAT581267S. The authors would like to thank the Research and Development Office (RDO) and Assoc. Prof. Seppo Karrila for editing this article.

References

  1. 1.
    Feng J, Pham H, Macdonald P, Winnik MA, Geurts JM, Zirkzee H, van Es S, German AL(1998) J Coat Technol 70:57CrossRefGoogle Scholar
  2. 2.
    Kessel N, Illsley DR, Keddie JL (2008) J Coat Technol Res 3:285CrossRefGoogle Scholar
  3. 3.
    Foster AB, Lovell PA, Rabjohns MA (2009) Polymer 50:654CrossRefGoogle Scholar
  4. 4.
    Tale NV, Jagtap RN (2010) Iran Polym J 19:801Google Scholar
  5. 5.
    Zhang X, Liu Y, Huang H, Li Y, Chen H (2012) J Appl Polym Sci 123:1822CrossRefGoogle Scholar
  6. 6.
    Jones FN, Nichols ME, Pappas SP (2017) Organic coatings: science and technology, 4th edn. Wiley, HobokenCrossRefGoogle Scholar
  7. 7.
    Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) Polym Bull 72:135CrossRefGoogle Scholar
  8. 8.
    Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) J Mater Sci Mater Med 6:460CrossRefGoogle Scholar
  9. 9.
    Farris S, Song J, Huang Q (2010) J Agric Food Chem 58:998CrossRefGoogle Scholar
  10. 10.
    Kiernan JA (2000) Microsc Today 1:8CrossRefGoogle Scholar
  11. 11.
    Gebben B, van den Berg HWA, Bargeman D, Smolders CA (1985) Polymer 26:1737CrossRefGoogle Scholar
  12. 12.
    Dai S, Barbari TA (1999) J Membr Sci 156:67CrossRefGoogle Scholar
  13. 13.
    Alemzadeh I, Vossoughi M (2002) Chem Eng Process 41:707CrossRefGoogle Scholar
  14. 14.
    Figueiredo KCS, Alves TLM, Borges CP (2009) J Appl Polym Sci 111:3074CrossRefGoogle Scholar
  15. 15.
    Kumbar SG, Soppimath KS, Aminabhavi TM (2003) J Appl Polym Sci 87:1525CrossRefGoogle Scholar
  16. 16.
    Dmitriev I, Kuryndin I, Bobrova N, Smirnov M (2015) Mater Today Commun 4:93CrossRefGoogle Scholar
  17. 17.
    Pye DJ (1960) Polymer composition and method. US Patent 2,960,486Google Scholar
  18. 18.
    Zweigle ML (1973) Removal of monomer from acrylamide polymers with sulfur dioxide. US Patent 3,780,006Google Scholar
  19. 19.
    Ellis B, Welding GN (1964) Rubber Chem Technol 37:563CrossRefGoogle Scholar
  20. 20.
    Flory PJ, Rehener J (1943) J Chem Phys 11:521CrossRefGoogle Scholar
  21. 21.
    Hagen R, Salmen L, Stenberg B (1996) J Polym Sci 34:1997CrossRefGoogle Scholar
  22. 22.
    Gent AN, Kawahara S, Zhao J (1998) Rubber Chem Technol 71:668CrossRefGoogle Scholar
  23. 23.
    Trabelsi S, Albouy P-A, Rault J (2002) Macromolecules 35:10054CrossRefGoogle Scholar
  24. 24.
    Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Macromolecules 39:5100CrossRefGoogle Scholar
  25. 25.
    Chenal J-M, Chazeau L, Guy L, Bomal Y, Gauthier C (2007) Polymer 48:1042CrossRefGoogle Scholar
  26. 26.
    Huneau B (2011) Rubber Chem Technol 84:425CrossRefGoogle Scholar
  27. 27.
    Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) BioTechniques 37:790CrossRefGoogle Scholar
  28. 28.
    Wang Y, Mo X, Sun XS, Wang D (2007) J Appl Polym Sci 104:130CrossRefGoogle Scholar
  29. 29.
    Eng AH, Ong EL (2001) In: Bhowmick AK, S Howard (ed) Handbook of elastomers, 2nd edn. Marcel Dekker, Inc., New York, pp 29–60Google Scholar
  30. 30.
    Johns J, Nakason C, Thitithammawong A, Klinpituksa P (2012) Rubber Chem Technol 85:565CrossRefGoogle Scholar
  31. 31.
    Honeycutt T, Flowery B (2005) Decreasing allergenicity of natural latex rubber prior to vulcanization. US Patent 20050277722 A1Google Scholar
  32. 32.
    Honeycutt T (2006) Decreasing allergenicity of natural latex rubber prior to vulcanization. US Patent 7056970 B2Google Scholar
  33. 33.
    Honeycutt T, William D, Matthew C, Russell C, Mark S (2007) Rubber World 237:32Google Scholar
  34. 34.
    Honeycutt T, Sharivker V, Sharivker S, Blinov V, Doyle W (2005) In international latex conference papers, CharlotteGoogle Scholar
  35. 35.
    Nakason C, Kaesaman A, Yimwan N (2003) J Appl Polym Sci 87:68CrossRefGoogle Scholar
  36. 36.
    Smith MB (2015) Organic chemistry: an acid–base approach, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) J Polym Res 22:115CrossRefGoogle Scholar
  38. 38.
    Ebewele RO (2000) Polymer science and technology. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Hutchinson JM (1997) In: Haward RN, Young RJ (eds) The physics of glassy polymers, 2nd edn. Springer, London, pp 128–138Google Scholar
  40. 40.
    Phillips JC (1979) J Non-Cryst Solids 34:153CrossRefGoogle Scholar
  41. 41.
    George S, Neelakantan NR, Varughese KT, Thomas S (1997) J Polym Sci B 35:2309CrossRefGoogle Scholar
  42. 42.
    Burrows HD, Ellis HA, Utah SI (1981) Polymer 22:1740CrossRefGoogle Scholar
  43. 43.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  44. 44.
    Park JW, Oh SC, Lee HP, Kim HT, Yoo KO (2000) Polym Degrad Stab 67:535CrossRefGoogle Scholar
  45. 45.
    Ceamanos J, Mastral JF, Millera A, Aldea ME (2002) J Anal Appl Pyrol 65:93CrossRefGoogle Scholar
  46. 46.
    Popescu C (1996), Thermochim Acta 285:309CrossRefGoogle Scholar
  47. 47.
    Kim W, Kim SD, Lee SB, Hong IN (2000) J Ind Eng Chem 6:348Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bencha Thongnuanchan
    • 1
  • Rattanawadee Ninjan
    • 1
  • Ekwipoo Kalkornsurapranee
    • 2
  • Natinee Lopattananon
    • 1
  • Charoen Nakason
    • 3
  1. 1.Department of Rubber Technology and Polymer Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  3. 3.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySurat ThaniThailand

Personalised recommendations