Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2992–3004 | Cite as

Adsorption Performance and Mechanisms of Methylene Blue Removal by Non-magnetic and Magnetic Particles Derived from the Vallisneria natans Waste

  • Lei Sun
  • Dan Yuan
  • Shungang Wan
  • Zebin Yu
  • Jiaqi Dang
Original Paper


Vallisneria natans (V. natans) is a submerged aquatic plant, and its dried biomass waste was used to prepare magnetic particle biomass adsorbent by chemical co-precipitation via FeSO4·7H2O and FeCl3·6H2O as iron precursors. Brunauer–Emmett–Teller specific surface area, total pore volume, and average pore width were 7.434 m2 g−1, 0.013 cm3 g−1, and 6.992 nm for magnetic V. natans, correspondingly, and 3.575 m2 g−1, 0.004 cm3 g−1, and 4.476 nm for non-magnetic V. natans, respectively. The adsorption kinetics of methylene blue (MB) is a more appropriate fit for pseudo-second-order kinetic model than pseudo-first-order and intraparticle diffusion kinetic models. Isotherm results showed that the adsorption of MB onto the non-magnetic and magnetic adsorbents agrees well with Dubinin–Radushkevich isotherm model. Moreover, the thermodynamics study implied that the adsorption of MB onto both adsorbents is a spontaneous and exothermic process. The maximum adsorption capacities of MB on non-magnetic and magnetic V. natans were 657.90 and 473.93 mg g−1 at 303 K, correspondingly.


Submerged plant Vallisneria natans Biomass waste Magnetic adsorbent Adsorption 



The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (Grant Number 51368004); Natural Science Foundation of Guangxi Province, China (Grant Numbers 2014GXNSFBA118058 and 2016GXNSFAA380213); China Postdoctoral Science Foundation (Grant Number 2016M590405); and Postdoctoral Science Foundation of Jiangsu Province, China (Grant Number 1601229C).


  1. 1.
    Wang Y, Cheng K, Wu W et al (2017) Atmos Environ 152:6–15CrossRefGoogle Scholar
  2. 2.
    Ayranci E, Duman O (2009) Sep Sci Technol 44:3735–3752CrossRefGoogle Scholar
  3. 3.
    Sun L, Wan S, Luo W (2013) Bioresour Technol 140:406–413CrossRefPubMedGoogle Scholar
  4. 4.
    Duman O, Tunç S, Polat TG (2015) Microporous Mesoporous Mater 210:176–184CrossRefGoogle Scholar
  5. 5.
    Cottet L, Almeida CAP, Naidek N et al (2014) Appl Clay Sci 95:25–31CrossRefGoogle Scholar
  6. 6.
    Duman O, Tunç S, Polat TG (2015) Appl Clay Sci 109–110:22–32CrossRefGoogle Scholar
  7. 7.
    Duman O, Ayranci E (2006) Sep Sci Technol 41:3673–3692CrossRefGoogle Scholar
  8. 8.
    Ahmed MB, Zhou JL, Ngo HH et al (2015) Sci Total Environ 532:112–126CrossRefPubMedGoogle Scholar
  9. 9.
    Sun L, Chen D, Wan S et al (2017) J Polym Environ. CrossRefGoogle Scholar
  10. 10.
    Marrakchi F, Ahmed MJ, Khanday WA et al (2017) J Taiwan Inst Chem Eng 71:47–54CrossRefGoogle Scholar
  11. 11.
    Mohan D, Sarswat A, Ok YS et al (2014) Bioresour Technol 160:191–202CrossRefPubMedGoogle Scholar
  12. 12.
    Muradov N, Fidalgo B, Gujar AC et al (2010) Bioresour Technol 101:8424–8428CrossRefPubMedGoogle Scholar
  13. 13.
    Naveen N, Saravanan P, Baskar G et al (2011) J Taiwan Inst Chem Eng 42:463–469CrossRefGoogle Scholar
  14. 14.
    Dave SR, Damani MS, Tipre DR et al (2010) Res J Biotechnol 5:15–19Google Scholar
  15. 15.
    Yao T, Guo S, Zeng C et al (2015) J Hazard Mater 292:90–97CrossRefPubMedGoogle Scholar
  16. 16.
    Wang S, Tang Y, Li K et al (2014) Bioresour Technol 174:67–73CrossRefPubMedGoogle Scholar
  17. 17.
    Duman O, Tunç S, Polat TG et al (2016) Carbohydr Polym 147:79–88CrossRefPubMedGoogle Scholar
  18. 18.
    Duman O, Tunç S, Bozoğlan BK et al (2016) J Alloys Compd 687:370–383CrossRefGoogle Scholar
  19. 19.
    Chen B, Chen Z, Lv S (2011) Bioresour Technol 102:716–723CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma R, Sarswat A, Pittman CU Jr et al (2017) RSC Adv 7:8606–8624CrossRefGoogle Scholar
  21. 21.
    Deng H, Lu J, Li G et al (2011) Chem Eng J 172:326–334CrossRefGoogle Scholar
  22. 22.
    Ofomaja AE, Naidoo EB, Modise SJ (2009) J Hazard Mater 168:909–917CrossRefPubMedGoogle Scholar
  23. 23.
    Sun L, Chen D, Wan S et al (2015) Bioresour Technol 198:300–308CrossRefPubMedGoogle Scholar
  24. 24.
    Wang P, Cao M, Wang C et al (2014) Appl Surf Sci 290:116–124CrossRefGoogle Scholar
  25. 25.
    Peydayesh M, Rahbar-Kelishami A (2015) J Ind Eng Chem 21:1014–1019CrossRefGoogle Scholar
  26. 26.
    Oguz E (2005) Colloids Surf Physicochem Eng Aspects 252:121–128CrossRefGoogle Scholar
  27. 27.
    Ahmed MJ, Theydan SK (2013) J Anal Appl Pyrol 99:101–109CrossRefGoogle Scholar
  28. 28.
    Zhou Z, Liu Y, Liu S et al (2017) Chem Eng J 314:223–231CrossRefGoogle Scholar
  29. 29.
    Safarik I, Horska K, Pospiskova K et al (2012) Powder Technol 229:285–289CrossRefGoogle Scholar
  30. 30.
    Saito T, Koopal LK, Nagasaki S et al (2008) J Phys Chem 112:1339–1349CrossRefGoogle Scholar
  31. 31.
    Nanda S, Mohanty P, Pant KK et al (2013) Bioenergy Res 6:663–677CrossRefGoogle Scholar
  32. 32.
    Vassilev SV, Baxter D, Andersen LK et al (2012) Fuel 94:1–33CrossRefGoogle Scholar
  33. 33.
    Mohan D, Kumar H, Sarswat A et al (2014) Chem Eng J 236:513–528CrossRefGoogle Scholar
  34. 34.
    Liou TH (2010) Chem Eng J 158:129–142CrossRefGoogle Scholar
  35. 35.
    Liu R, Liu Y, Zhou X et al (2014) Bioresour Technol 154:138–147CrossRefPubMedGoogle Scholar
  36. 36.
    Yang J, Qiu K (2010) Chem Eng J 165:209–217CrossRefGoogle Scholar
  37. 37.
    Zhang J, Wang Q (2016) J Clean Prod 112:3927–3934CrossRefGoogle Scholar
  38. 38.
    Yamaura M, Fungaro DA (2013) J Mater Sci 48:5093–5101CrossRefGoogle Scholar
  39. 39.
    Mohan D, Sarswat A, Singh VK et al (2011) Chem Eng J 172:1111–1125CrossRefGoogle Scholar
  40. 40.
    Zhao S, Zhou T (2016) Bioresour Technol 219:330–337CrossRefPubMedGoogle Scholar
  41. 41.
    Ma J, Zhu Z, Chen B et al (2013) J Mater Chem 1:4662–4666CrossRefGoogle Scholar
  42. 42.
    Chen CC, Chen CF, Chen CM et al (2007) Electrochem Commun 9:159–163CrossRefGoogle Scholar
  43. 43.
    Han Q, Liu Z, Xu Y et al (2007) J Phys Chem C 111:5034–5038CrossRefGoogle Scholar
  44. 44.
    Maurya NS, Mittal AK, Cornel P et al (2006) Bioresour Technol 97:512–521CrossRefPubMedGoogle Scholar
  45. 45.
    Yenisoy-Karakas S, Aygun A, Gunes M et al (2004) Carbon 42:477–484CrossRefGoogle Scholar
  46. 46.
    Bedin KC, Martins AC, Cazetta AL et al (2016) Chem Eng J 286:476–484CrossRefGoogle Scholar
  47. 47.
    Ayranci E, Duman O (2010) Chem Eng J 156:70–76CrossRefGoogle Scholar
  48. 48.
    Duman O, Ayranci E (2010) J Hazard Mater 174:359–367CrossRefPubMedGoogle Scholar
  49. 49.
    Ho YS (2006) J Hazard Mater 136:681–689CrossRefPubMedGoogle Scholar
  50. 50.
    Li Y, Du Q, Liu T et al (2013) Carbohydr Polym 95:501–507CrossRefPubMedGoogle Scholar
  51. 51.
    Ma H, Li J, Liu W et al (2015) Bioresour Technol 190:13–20CrossRefPubMedGoogle Scholar
  52. 52.
    Ge H, Wang C, Liu S et al (2016) Bioresour Technol 221:419–429CrossRefPubMedGoogle Scholar
  53. 53.
    Ayan EM, Secim P, Karakaya S et al (2012) Clean-Soil Air Water 40:856–863CrossRefGoogle Scholar
  54. 54.
    Vadivelan V, Kumar KV (2005) J Colloid Interface Sci 286:90–100CrossRefPubMedGoogle Scholar
  55. 55.
    Ozer D, Dursun G, Ozer A (2007) J Hazard Mater 144:171–179CrossRefPubMedGoogle Scholar
  56. 56.
    Han R, Zhang L, Song C et al (2010) Carbohydr Polym 79:1140–1149CrossRefGoogle Scholar
  57. 57.
    Yagub MT, Sen TK, Ang M (2014) Environ Earth Sci 71:1507–1519CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Jin Y, Lu Q et al (2014) Ind Eng Chem Res 53:4247–4253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Resources, Environment and MaterialsGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Key Laboratory of the Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of EnvironmentHohai UniversityNanjingPeople’s Republic of China

Personalised recommendations