Skip to main content
Log in

Effect of Gamma Irradiation on Fully Aliphatic Poly(Propylene/Neopentyl Cyclohexanedicarboxylate) Random Copolymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The widespread use of conventional petrochemical-based plastics and their low biodegradability led to a growing pollution issue. Among the class of the aliphatic polyesters, poly(propylene/neopentyl cyclohexanedicarboxylate) [P(PCExNCEy)] random copolymers combine promising physical–chemical properties and biodegradability features but they are characterized by slow degradability. The effect of gamma radiation on both chemical-physical properties and compostability was evaluated by several techniques on different samples irradiated in air at absorbed doses up to 500 kGy and in water or under oxidative atmosphere up to 100 kGy. According to the results obtained, exposure to radiation significantly affects polymer molecular weight and hydrophilicity, while crystallinity remains unaltered and biodegradability is only slightly influenced. In particular, among the different irradiation environments used, irradiation in water seems to favor the polymer degradation in compost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mackay K, Afonso A, Maggiore A, Binaglia M (2017) Extensive review on the presence of microplastics and nanoplastics in seafood: data gaps and recommendations for future risk assessment for human health. In: Fate and impact of microplastics in marine ecosystems. Elsevier, p 18. https://doi.org/10.1016/B978-0-12-812271-6.00019-3

  2. Thompson RC (2015) Microplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 185–200

  3. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    Article  CAS  PubMed  Google Scholar 

  4. Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 6:538–546

    Article  CAS  PubMed  Google Scholar 

  5. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collyer AA (1990) A Practical guide to the selection of high-temperature engineering thermoplastics. Elsevier, Burlington, p 66

    Google Scholar 

  7. Sánchez-Arrieta N, Martínez de Ilarduya A, Alla A, Muñoz-Guerra S (2005) Poly(ethylene terephthalate) polymers containing 1,4-cyclohexane dicarboxylate units. Eur Polym J 41:1493–1501

    Article  CAS  Google Scholar 

  8. Wang L, Xie Z, Bi X, Wang X, Zhang A, Chen Z, Zhou J, Feng Z (2006) Preparation and characterization of aliphatic/aromatic copolyesters based on 1,4-cyclohexanedicarboxylic acid. Polym Degrad Stab 91(9):2220–2228

    Article  CAS  Google Scholar 

  9. Sandhya TE, Ramesh C, Sivaram S (2007) Copolyesters based on poly(butylene terephthalate)s containing cyclohexyl and cyclopentyl ring: effect of molecular structure on thermal and crystallization behavior. Macromolecules 19(40):6906–6915

    Article  CAS  Google Scholar 

  10. Berti C, Binassi E, Celli A, Colonna M, Fiorini M, Marchese P, Marianucci E, Gazzano M, Di Credico F, Brunelle DJ (2008) Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J Polym Sci B 46:619–630

    Article  CAS  Google Scholar 

  11. Berti C, Celli A, Marchese P, Barbiroli G, Di Credico F, Verne V, Commereuc S (2009) Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. Eur Polym J 45:2402–2412

    Article  CAS  Google Scholar 

  12. Commereuc S, Askanian H, Verney V, Celli A, Marchese P, Berti C (2013) About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: structure/degradability relationships. Polym Degrad Stab 98:1321–1328

    Article  CAS  Google Scholar 

  13. Burillo G, Clough R, Czvikovszky T (2002) Polymer recycling: potential application of radiation technology. Radiat Phys Chem 64:41–51

    Article  CAS  Google Scholar 

  14. Buttafava A, Consolati G, Mariani M, Quasso F, Ravasio U (2005) Effects induced by gamma irradiation of different polyesters studied by viscosimetry, thermal analysis and positron annihilation spectroscopy. Polym Degrad Stab 89:133–139

    Article  CAS  Google Scholar 

  15. Ravasio U, Buttafava A, Mariani M, Dondi D, Faucitano A (2008) EPR and ab-initio study on the solid state radiolysis of aliphatic and aromatic polyesters. Polym Degrad Stab 93:1031

    Article  CAS  Google Scholar 

  16. Stone JA (1967) Radiolysis of cyclohexane in a xenon matrix at 77 K. Can J Chem 46(8):1267–1277

    Article  Google Scholar 

  17. LaVerne JA, Enomoto K, Araos MS (2007) Radical yields in the radiolysis of cyclic compounds. Radiat Phys Chem 76(8–9):1272–1274

    Article  CAS  Google Scholar 

  18. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  19. Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) Approaches to enhance the biodegradation of polyolefins. Open Environ Eng J 2:68–80

    Article  CAS  Google Scholar 

  20. Negrin M, Macerata E, Consolati G, Quasso F, Genovese L, Soccio M, Giola M, Lotti N, Munari A, Mariani M (2018) Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging applications. Radiat Phys Chem 142:34–43

  21. Genovese L, Lotti N, Gazzano M, Finelli L, Munari A (2015) New eco-friendly random copolyesters based on poly(propylene cyclohexanedicarboxylate): structure-properties relationships. Express Polym Lett 9:972–983

    Article  CAS  Google Scholar 

  22. Kansy J (1996) Microcomputer program for analysis of positronium annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244

    Article  CAS  Google Scholar 

  23. O’Donnell JH (1991) Chemistry of radiation degradation of polymers. In: Clough R (ed) Radiation effects on polymers. ACS symposium series, American Chemical Society, Washington, DC, pp 402–413

    Chapter  Google Scholar 

  24. Olejniczak J, Rosiak J, Charlesby A (1991) Gel/dose curves for polymers undergoing simultaneous cross-linking and scission. Radiat Phys Chem 38(1):113–118

    CAS  Google Scholar 

  25. Charlesby A (1960) Atomic radiation and polymers. Pergamon Press, Oxford

    Google Scholar 

  26. Gupta MC, Deshmukh VG (1982) Radiation effects on poly(lactic acid). Polymer 24:827–830

    Article  Google Scholar 

  27. Loo JSC, Ooi CP, Boey FYC (2005) Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 26:1359–1367

    Article  CAS  PubMed  Google Scholar 

  28. Mićić OI, Gal OS (1979) Radiation chemistry of acids, esters, anhydrides, lactones and lactams, In: Patai S (ed) Acid derivatives, vol 2. Wiley, Chichester

    Google Scholar 

  29. Sevilla MD, Becker D, Sevilla CL, Plante K, Swarts S (1984) An electron spin resonance investigation of ester cation radicals at low temperatures. Faraday Discuss Cem Soc 78:71–81

    Article  CAS  Google Scholar 

  30. Emanuel NM, Roginskii VA, Buchachenko AL (1982) Some problems of the kinetics of radical reactions in solid polymers. Russ Chem Rev 51(3):203

    Article  Google Scholar 

  31. Ingold KU (1973) Rate constants for free radical reactions. In: Kochi JK (ed) Free radicals, vol 1. Wiley, New York

    Google Scholar 

  32. Kenney JF (1968) Properties of block versus random copolymers. Polym Eng Sci 8:216–226

    Article  CAS  Google Scholar 

  33. Wang SJ, Jean YC (1988) Positrons and positroniumin molecular solids. In: Schrader DM, Jean YC (eds) Positron and positronium chemistry. Elsevier, Amsterdam, The Netherlands, pp 255–281

  34. Jean YC (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. IOS Press, Amsterdam, pp 563–580

    Google Scholar 

  35. Tao S (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  36. Eldrup M, Lightbody D, Sherwood J (1981) The temperature dependence of positron lifetimes in solid Pivalic acid. Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  37. Consolati G (2002) Positronium trapping in small voids: influence of their shape on positron annihilation results. J Chem Phys 117:7279–7283

    Article  CAS  Google Scholar 

  38. Hart E, Thomas J, Gordon S (1964) A review of the radiation chemistry of single-carbon compounds and some reactions of the hydrated electron in aqueous solution. Radiat Res Suppl 4:74–88

    Article  CAS  Google Scholar 

  39. Stevens GC, Clarke RM, Hart EJ (1972) Radiolysis of aqueous methane solutions. J Phys Chem 76:3863–3867

    Article  CAS  Google Scholar 

  40. Hickel B (1975) Absorption spectra and kinetics of methyl and ethyl radicals in water. J Phys Chem 79:1054–1059

    Article  CAS  Google Scholar 

  41. Getoff N (1991) Radiation- and photoinduced degradation of pollutants in water. A comparative study. Radiat Phys Chem 37:673–680

    CAS  Google Scholar 

  42. Ulanski P, Bothe E, von Sonntag C (1999) OH radical induced depolymerization of poly(methacrylic acid). Nucl Instrum Methods Phys Res B 151:350–355

    Article  CAS  Google Scholar 

  43. Ulanski P, Bothe E, Hildenbrand K, Rosiak JM, von Sonntag C (1996) Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solutions. J Chem Soc Perkin Trans 2:13

    Article  Google Scholar 

  44. Janik I, Ulanski P, Rosiak JM, von Sonntag C (2000) Hydroxyl-radical-induced reactions of the poly(vinyl methyl ether) model 2,4-dimethoxypentane in the absence and presence of dioxygen: a pulse radiolysis and product study. J Chem Soc Perkin Trans 2:2034–2040

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Prof. Antonio Faucitano for the fruitful discussion on the radiolytic degradation mechanisms of the system under study. The authors are grateful to Gammatom S.r.l. for the precious support in the irradiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Negrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrin, M., Macerata, E., Consolati, G. et al. Effect of Gamma Irradiation on Fully Aliphatic Poly(Propylene/Neopentyl Cyclohexanedicarboxylate) Random Copolymers. J Polym Environ 26, 3017–3033 (2018). https://doi.org/10.1007/s10924-018-1181-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1181-z

Keywords

Navigation