Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3017–3033 | Cite as

Effect of Gamma Irradiation on Fully Aliphatic Poly(Propylene/Neopentyl Cyclohexanedicarboxylate) Random Copolymers

  • M. Negrin
  • E. Macerata
  • G. Consolati
  • F. Quasso
  • A. Lucotti
  • M. Tommasini
  • L. Genovese
  • M. Soccio
  • N. Lotti
  • M. Mariani
Original Paper

Abstract

The widespread use of conventional petrochemical-based plastics and their low biodegradability led to a growing pollution issue. Among the class of the aliphatic polyesters, poly(propylene/neopentyl cyclohexanedicarboxylate) [P(PCExNCEy)] random copolymers combine promising physical–chemical properties and biodegradability features but they are characterized by slow degradability. The effect of gamma radiation on both chemical-physical properties and compostability was evaluated by several techniques on different samples irradiated in air at absorbed doses up to 500 kGy and in water or under oxidative atmosphere up to 100 kGy. According to the results obtained, exposure to radiation significantly affects polymer molecular weight and hydrophilicity, while crystallinity remains unaltered and biodegradability is only slightly influenced. In particular, among the different irradiation environments used, irradiation in water seems to favor the polymer degradation in compost.

Keywords

Aliphatic polyesters Random copolymers 1,4-Cyclohexanedicarboxylic acid Gamma irradiation Compostability 

Notes

Acknowledgements

Authors would like to thank Prof. Antonio Faucitano for the fruitful discussion on the radiolytic degradation mechanisms of the system under study. The authors are grateful to Gammatom S.r.l. for the precious support in the irradiation experiments.

References

  1. 1.
    Mackay K, Afonso A, Maggiore A, Binaglia M (2017) Extensive review on the presence of microplastics and nanoplastics in seafood: data gaps and recommendations for future risk assessment for human health. In: Fate and impact of microplastics in marine ecosystems. Elsevier, p 18.  https://doi.org/10.1016/B978-0-12-812271-6.00019-3
  2. 2.
    Thompson RC (2015) Microplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 185–200Google Scholar
  3. 3.
    Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492CrossRefPubMedGoogle Scholar
  4. 4.
    Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 6:538–546CrossRefPubMedGoogle Scholar
  5. 5.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Collyer AA (1990) A Practical guide to the selection of high-temperature engineering thermoplastics. Elsevier, Burlington, p 66Google Scholar
  7. 7.
    Sánchez-Arrieta N, Martínez de Ilarduya A, Alla A, Muñoz-Guerra S (2005) Poly(ethylene terephthalate) polymers containing 1,4-cyclohexane dicarboxylate units. Eur Polym J 41:1493–1501CrossRefGoogle Scholar
  8. 8.
    Wang L, Xie Z, Bi X, Wang X, Zhang A, Chen Z, Zhou J, Feng Z (2006) Preparation and characterization of aliphatic/aromatic copolyesters based on 1,4-cyclohexanedicarboxylic acid. Polym Degrad Stab 91(9):2220–2228CrossRefGoogle Scholar
  9. 9.
    Sandhya TE, Ramesh C, Sivaram S (2007) Copolyesters based on poly(butylene terephthalate)s containing cyclohexyl and cyclopentyl ring: effect of molecular structure on thermal and crystallization behavior. Macromolecules 19(40):6906–6915CrossRefGoogle Scholar
  10. 10.
    Berti C, Binassi E, Celli A, Colonna M, Fiorini M, Marchese P, Marianucci E, Gazzano M, Di Credico F, Brunelle DJ (2008) Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J Polym Sci B 46:619–630CrossRefGoogle Scholar
  11. 11.
    Berti C, Celli A, Marchese P, Barbiroli G, Di Credico F, Verne V, Commereuc S (2009) Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. Eur Polym J 45:2402–2412CrossRefGoogle Scholar
  12. 12.
    Commereuc S, Askanian H, Verney V, Celli A, Marchese P, Berti C (2013) About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: structure/degradability relationships. Polym Degrad Stab 98:1321–1328CrossRefGoogle Scholar
  13. 13.
    Burillo G, Clough R, Czvikovszky T (2002) Polymer recycling: potential application of radiation technology. Radiat Phys Chem 64:41–51CrossRefGoogle Scholar
  14. 14.
    Buttafava A, Consolati G, Mariani M, Quasso F, Ravasio U (2005) Effects induced by gamma irradiation of different polyesters studied by viscosimetry, thermal analysis and positron annihilation spectroscopy. Polym Degrad Stab 89:133–139CrossRefGoogle Scholar
  15. 15.
    Ravasio U, Buttafava A, Mariani M, Dondi D, Faucitano A (2008) EPR and ab-initio study on the solid state radiolysis of aliphatic and aromatic polyesters. Polym Degrad Stab 93:1031CrossRefGoogle Scholar
  16. 16.
    Stone JA (1967) Radiolysis of cyclohexane in a xenon matrix at 77 K. Can J Chem 46(8):1267–1277CrossRefGoogle Scholar
  17. 17.
    LaVerne JA, Enomoto K, Araos MS (2007) Radical yields in the radiolysis of cyclic compounds. Radiat Phys Chem 76(8–9):1272–1274CrossRefGoogle Scholar
  18. 18.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRefPubMedGoogle Scholar
  19. 19.
    Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) Approaches to enhance the biodegradation of polyolefins. Open Environ Eng J 2:68–80CrossRefGoogle Scholar
  20. 20.
    Negrin M, Macerata E, Consolati G, Quasso F, Genovese L, Soccio M, Giola M, Lotti N, Munari A, Mariani M (2018) Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging applications. Radiat Phys Chem 142:34–43Google Scholar
  21. 21.
    Genovese L, Lotti N, Gazzano M, Finelli L, Munari A (2015) New eco-friendly random copolyesters based on poly(propylene cyclohexanedicarboxylate): structure-properties relationships. Express Polym Lett 9:972–983CrossRefGoogle Scholar
  22. 22.
    Kansy J (1996) Microcomputer program for analysis of positronium annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244CrossRefGoogle Scholar
  23. 23.
    O’Donnell JH (1991) Chemistry of radiation degradation of polymers. In: Clough R (ed) Radiation effects on polymers. ACS symposium series, American Chemical Society, Washington, DC, pp 402–413CrossRefGoogle Scholar
  24. 24.
    Olejniczak J, Rosiak J, Charlesby A (1991) Gel/dose curves for polymers undergoing simultaneous cross-linking and scission. Radiat Phys Chem 38(1):113–118Google Scholar
  25. 25.
    Charlesby A (1960) Atomic radiation and polymers. Pergamon Press, OxfordGoogle Scholar
  26. 26.
    Gupta MC, Deshmukh VG (1982) Radiation effects on poly(lactic acid). Polymer 24:827–830CrossRefGoogle Scholar
  27. 27.
    Loo JSC, Ooi CP, Boey FYC (2005) Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 26:1359–1367CrossRefPubMedGoogle Scholar
  28. 28.
    Mićić OI, Gal OS (1979) Radiation chemistry of acids, esters, anhydrides, lactones and lactams, In: Patai S (ed) Acid derivatives, vol 2. Wiley, ChichesterGoogle Scholar
  29. 29.
    Sevilla MD, Becker D, Sevilla CL, Plante K, Swarts S (1984) An electron spin resonance investigation of ester cation radicals at low temperatures. Faraday Discuss Cem Soc 78:71–81CrossRefGoogle Scholar
  30. 30.
    Emanuel NM, Roginskii VA, Buchachenko AL (1982) Some problems of the kinetics of radical reactions in solid polymers. Russ Chem Rev 51(3):203CrossRefGoogle Scholar
  31. 31.
    Ingold KU (1973) Rate constants for free radical reactions. In: Kochi JK (ed) Free radicals, vol 1. Wiley, New YorkGoogle Scholar
  32. 32.
    Kenney JF (1968) Properties of block versus random copolymers. Polym Eng Sci 8:216–226CrossRefGoogle Scholar
  33. 33.
    Wang SJ, Jean YC (1988) Positrons and positroniumin molecular solids. In: Schrader DM, Jean YC (eds) Positron and positronium chemistry. Elsevier, Amsterdam, The Netherlands, pp 255–281Google Scholar
  34. 34.
    Jean YC (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. IOS Press, Amsterdam, pp 563–580Google Scholar
  35. 35.
    Tao S (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510CrossRefGoogle Scholar
  36. 36.
    Eldrup M, Lightbody D, Sherwood J (1981) The temperature dependence of positron lifetimes in solid Pivalic acid. Chem Phys 63:51–58CrossRefGoogle Scholar
  37. 37.
    Consolati G (2002) Positronium trapping in small voids: influence of their shape on positron annihilation results. J Chem Phys 117:7279–7283CrossRefGoogle Scholar
  38. 38.
    Hart E, Thomas J, Gordon S (1964) A review of the radiation chemistry of single-carbon compounds and some reactions of the hydrated electron in aqueous solution. Radiat Res Suppl 4:74–88CrossRefGoogle Scholar
  39. 39.
    Stevens GC, Clarke RM, Hart EJ (1972) Radiolysis of aqueous methane solutions. J Phys Chem 76:3863–3867CrossRefGoogle Scholar
  40. 40.
    Hickel B (1975) Absorption spectra and kinetics of methyl and ethyl radicals in water. J Phys Chem 79:1054–1059CrossRefGoogle Scholar
  41. 41.
    Getoff N (1991) Radiation- and photoinduced degradation of pollutants in water. A comparative study. Radiat Phys Chem 37:673–680Google Scholar
  42. 42.
    Ulanski P, Bothe E, von Sonntag C (1999) OH radical induced depolymerization of poly(methacrylic acid). Nucl Instrum Methods Phys Res B 151:350–355CrossRefGoogle Scholar
  43. 43.
    Ulanski P, Bothe E, Hildenbrand K, Rosiak JM, von Sonntag C (1996) Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solutions. J Chem Soc Perkin Trans 2:13CrossRefGoogle Scholar
  44. 44.
    Janik I, Ulanski P, Rosiak JM, von Sonntag C (2000) Hydroxyl-radical-induced reactions of the poly(vinyl methyl ether) model 2,4-dimethoxypentane in the absence and presence of dioxygen: a pulse radiolysis and product study. J Chem Soc Perkin Trans 2:2034–2040CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Negrin
    • 1
  • E. Macerata
    • 1
  • G. Consolati
    • 2
  • F. Quasso
    • 2
  • A. Lucotti
    • 3
  • M. Tommasini
    • 3
  • L. Genovese
    • 4
  • M. Soccio
    • 4
  • N. Lotti
    • 4
  • M. Mariani
    • 1
  1. 1.Department of EnergyPolitecnico di MilanoMilanoItaly
  2. 2.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanoItaly
  3. 3.Department of Chemistry, Material and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
  4. 4.Department of Civil, Chemical, Environmental and Materials EngineeringUniversità di BolognaBolognaItaly

Personalised recommendations