Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2925–2933 | Cite as

RF Plasma Polymerization of Orange Oil and Characterization of the Polymer Thin Films

  • Surjith Alancherry
  • Kateryna Bazaka
  • Mohan V. Jacob
Original Paper
  • 78 Downloads

Abstract

The present study describes an environmentally friendly approach to fabricate hydrocarbon-rich polymer thin films from a bio-renewable precursor, orange oil, cold extracted from orange peels using radio frequency plasma polymerization. The polymer thin films fabricated at different RF power level (10–75 W) were characterized with variable angle spectroscopic ellipsometry, UV–visible spectroscopy, Fourier transform infrared spectroscopy and atomic force microscopy. Optical characterization showed that independent of deposition power films exhibited good transparency (~ 90%) in the visible region and a refractive index of 1.55 at 500 nm. The optical band gap measured around 3.60 eV and falls within the insulating region. The atomic force microscopic images revealed that the surface is pinhole-free in nature and smooth at nanoscale, with average surface roughness dependent on the deposition power. Film hardness increased from 0.50 to 0.78 GPa as applied power increased from 10 to 75 W.

Keywords

Plasma polymerization Essential oil Organic polymer Optical properties 

Notes

Acknowledgements

Surjith Alancherry is grateful to JCUPRS for the financial support. This work was partly supported by Austrlian Research Council.

References

  1. 1.
    Nketia-Yawson B, Lee HS, Seo D, Yoon Y, Park WT, Kwak K, Son HJ, Kim B, Noh YY (2015) Adv Mater 27:3045CrossRefGoogle Scholar
  2. 2.
    Zheng Z, Zhang S, Zhang J, Qin Y, Li W, Yu R, Wei Z, Hou J (2016) Adv Mater 28:5133CrossRefGoogle Scholar
  3. 3.
    Sekine C, Tsubata Y, Yamada T, Kitano M, Doi S (2014) Sci Technol Adv Mater 15:1CrossRefGoogle Scholar
  4. 4.
    White MS, Kaltenbrunner M, Głowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DA, Miron MC (2013) Nat Photonics 7:811CrossRefGoogle Scholar
  5. 5.
    Xu X, Yao Y, Shan B, Gu X, Liu D, Liu J, Xu J, Zhao N, Hu W, Miao Q (2016) Adv Mater 28:5276CrossRefGoogle Scholar
  6. 6.
    Wertheimer M (2014) Plasma Chem Plasma Process 34:363CrossRefGoogle Scholar
  7. 7.
    Akhavan B, Jarvis K, Majewski P (2014) Langmuir 30:1444CrossRefGoogle Scholar
  8. 8.
    Friedrich J (2011) Plasma Process Polym 8:783CrossRefGoogle Scholar
  9. 9.
    Michelmore A, Steele DA, Robinson DE, Whittle JD, Short RD (2013) Soft Matter 9:6167CrossRefGoogle Scholar
  10. 10.
    Kylián O, Choukourov A, Biederman H (2013) Thin Solid Films 548:1CrossRefGoogle Scholar
  11. 11.
    Easton CD, Jacob MV (2010) J Appl Polym Sci 115:404CrossRefGoogle Scholar
  12. 12.
    Wen L, Jeong D-C, Javid A, Kim S, Nam J-D, Song C, Han JG (2015) Thin Solid Films 587:66CrossRefGoogle Scholar
  13. 13.
    Ahmad J, Bazaka K, Vasilev K, Jacob MV (2015) J Appl Polym Sci 132:42318CrossRefGoogle Scholar
  14. 14.
    Jiang H, O’neill K, Grant J, Tullis S, Eyink K, Johnson W, Fleitz P, Bunning T (2004) Chem Mater 16:1292CrossRefGoogle Scholar
  15. 15.
    Berndt J, Acid H, Kovacevic E, Cachoncinlle C, Strunskus T, Boufendi L (2013) J Appl Phys 113:063302CrossRefGoogle Scholar
  16. 16.
    Akhavan B, Jarvis K, Majewski P (2013) Plasma Process Polym 10:1018CrossRefGoogle Scholar
  17. 17.
    Kehail AA, Boominathan V, Fodor K, Chalivendra V, Ferreira T, Brigham CJ (2016) J Polym Environ 25:1Google Scholar
  18. 18.
    Islam S, Bhuiyan MR, Islam M (2016) J Polym Environ 25:1Google Scholar
  19. 19.
    Wilbon PA, Chu F, Tang C (2013) Macromol Rapid Commun 34:8CrossRefGoogle Scholar
  20. 20.
    Mathers RT (2012) J Polym Sci A 50:1CrossRefGoogle Scholar
  21. 21.
    Michelmore A, Gross-Kosche P, Al-Bataineh SA, Whittle JD, Short RD (2013) Langmuir 29:2595CrossRefGoogle Scholar
  22. 22.
    Bazaka K, Jacob MV, Ostrikov K (2016) Chem Rev 116:163CrossRefGoogle Scholar
  23. 23.
    Al-Jumaili A, Bazaka K, Jacob MV (2017) Nanomaterials 7:270CrossRefGoogle Scholar
  24. 24.
    Jacob MV, Bazaka K, Weis M, Taguchi D, Manaka T, Iwamoto M (2010) Thin Solid Films 518:6123CrossRefGoogle Scholar
  25. 25.
    Bazaka K, Jacob MV, Truong VK, Crawford RJ, Ivanova EP (2011) Polymers 3:388CrossRefGoogle Scholar
  26. 26.
    Shen Z, Mishra V, Imison B, Palmer M, Fairclough R (2002) J Agric Food Chem 50:154CrossRefGoogle Scholar
  27. 27.
    Easton CD, Jacob MV, Shanks RA (2009) Polymer 50:3465CrossRefGoogle Scholar
  28. 28.
    Gengenbach TR, Griesser HJ (1998) J Polym Sci A 36:985CrossRefGoogle Scholar
  29. 29.
    Siow KS, Britcher L, Kumar S, Griesser HJ (2014) Plasma Process Polym 11:133CrossRefGoogle Scholar
  30. 30.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3CrossRefGoogle Scholar
  31. 31.
    Zhang C, Wyatt J, Weinkauf D (2004) Polymer 45:7665CrossRefGoogle Scholar
  32. 32.
    Wang J, Neoh K, Kang E (2004) Thin Solid Films 446:205CrossRefGoogle Scholar
  33. 33.
    Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Electronics 6:86CrossRefGoogle Scholar
  34. 34.
    Lim J-S, Shin P-K, Lee B-J, Lee S (2010) Org Electron 11:951CrossRefGoogle Scholar
  35. 35.
    Xu Y, Berger PR, Cho J, Timmons RB (2006) J Appl Phys 99:014104CrossRefGoogle Scholar
  36. 36.
    Yoon W-J, Bhattacharyya D, Timmons RB, Berger PR (2010) Org Electron 11:1767CrossRefGoogle Scholar
  37. 37.
    Bhattacharyya D, Yoon WJ, Berger PR, Timmons RB (2008) Adv Mater 20:2383CrossRefGoogle Scholar
  38. 38.
    Tsai CH, Li YS, Cheng I, Chen JZ (2014) Plasma Process Polym 11:89CrossRefGoogle Scholar
  39. 39.
    Han L, Song K, Mandlik P, Wagner S (2010) Appl Phys Lett 96:042111CrossRefGoogle Scholar
  40. 40.
    Li Y-S, Tsai C-H, Kao S-H, Wu I-W, Chen J-Z, Wu C-I, Lin C-F, Cheng I-C (2013) J Phys D 46:435502CrossRefGoogle Scholar
  41. 41.
    Woollam J (2005) Guide to using WVASE32 spectroscopic ellipsomtry data acquisition and analysis software. JA Woollam Co, IncGoogle Scholar
  42. 42.
    Ahmad J, Bazaka K, Jacob MV (2014) Electronics 3:266CrossRefGoogle Scholar
  43. 43.
    Lopez GP, Ratner BD (1991) Langmuir 7:766CrossRefGoogle Scholar
  44. 44.
    Shi FF (1996) Surf Coat Technol 82:1CrossRefGoogle Scholar
  45. 45.
    Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, ChichesterGoogle Scholar
  46. 46.
    Zapata RB, Villa AL, de Correa CM, Williams CT (2009) Appl Catal A 365:42CrossRefGoogle Scholar
  47. 47.
    Schulz H, Schrader B, Quilitzsch R, Steuer B (2002) Appl Spectrosc 56:117CrossRefGoogle Scholar
  48. 48.
    Michelmore A, Steele DA, Whittle JD, Bradley JW, Short RD (2013) RSC Adv 3:13540CrossRefGoogle Scholar
  49. 49.
    Tauc J (1968) Mater Res Bull 3:37CrossRefGoogle Scholar
  50. 50.
    You ZZ, Hua GJ (2009) Vacuum 83:984CrossRefGoogle Scholar
  51. 51.
    Tang J, Lee C, Chan M, Lee S (2008) Appl Surf Sci 254:7688CrossRefGoogle Scholar
  52. 52.
    Fritz SE, Kelley TW, Frisbie CD (2005) J Phys Chem B 109:10574CrossRefGoogle Scholar
  53. 53.
    Li J, Liu D, Miao Q, Yan F (2012) J Mater Chem 22:15998CrossRefGoogle Scholar
  54. 54.
    VanLandingham MR, Villarrubia JS, Guthrie WF, Meyers GF (2001) Nanoindentation of polymers: an overview. Macromolecular symposia. Wiley, Hoboken, p 15Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Surjith Alancherry
    • 1
  • Kateryna Bazaka
    • 1
    • 2
  • Mohan V. Jacob
    • 1
  1. 1.College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  2. 2.School of Chemistry, Physics, and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations