Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2954–2963 | Cite as

Application of Vitamin B1-Coated Carbon Nanotubes for the Production of Starch Nanocomposites with Enhanced Structural, Optical, Thermal and Cd(II) Adsorption Properties

  • Shadpour Mallakpour
  • Nasrin Nouruzi
Original Paper

Abstract

The objective of this investigation was to meliorate the physicochemical properties of corn starch-based polymeric nanocomposites (PNCs) by accommodating different levels of thiamine chloride assigned as vitamin B1 (VB)-treated carbon nanotubes (CNTs). The PNCs were acquired by solution casting method as a green method. The effect of CNTs@VB amounts on different properties of the PNCs including; hydrophilicity, structural properties, Cd(II) removal as well as optical traits was surveyed. Transmission electron microscope and field-emission scanning electron microscope images exposed that the CNTs@VB were fine distributed in the starch matrix. X-ray diffraction spectra of the PNCs displayed characteristic peak of the nanotube and also a decline in polymer crystallization after CNTs@VB incorporation. Compared with the intact starch, the PNCs indicated an improvement in thermal stability. The removal percentages of Cd(II) were amplified with raising adsorbent dosages to 0.08 g.

Keywords

Corn starch Hydrophilic PNCs Carbon nanotubes Vitamin B1 Cd(II) adsorption 

Notes

Acknowledgements

The authors thankful for the financial supports of the Isfahan University of Technology (IUT), Isfahan, I. R. Iran, National Elite Foundation (NEF), Tehran, I. R. Iran, Iran Nanotechnology Initiative Council (INIC), Tehran, I. R. Iran, and Center of Excellence in Sensors and Green Chemistry Research (IUT), Isfahan, I. R. Iran.

References

  1. 1.
    Mallakpour S, Nouruzi N (2016) Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer 89:94–101CrossRefGoogle Scholar
  2. 2.
    Wu XS (2011) Effect of glycerin and starch crosslinking on molecular compatibility of biodegradable poly(lactic acid)-starch composites. J Polym Environ 19:912–917CrossRefGoogle Scholar
  3. 3.
    Haaj SB, Thielemans W, Magnin A, Boufi S (2016) Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr Polym 143:310–317CrossRefGoogle Scholar
  4. 4.
    Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63CrossRefGoogle Scholar
  5. 5.
    Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch. Polym Degrad Stab 93:1884–1890CrossRefGoogle Scholar
  6. 6.
    Jiang S, Liu C, Wang X, Xiong L, Sun Q (2016) Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. Food Sci Technol 69:251–257Google Scholar
  7. 7.
    Meira SMM, Zehetmeyer G, Scheibel JM, Werner JO, Brandelli A (2016) Starch-halloysite nanocomposites containing nisin: characterization and inhibition of Listeria monocytogenes in soft cheese. Food Sci Technol 68:226–234Google Scholar
  8. 8.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  9. 9.
    Ben Doudou B, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C (2014) Hybrid carbon nanotube-silica/polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21:420–429CrossRefGoogle Scholar
  10. 10.
    Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905CrossRefGoogle Scholar
  11. 11.
    Wang P-H, Ghoshal S, Gulgunje P, Verghese N, Kumar S (2016) Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes. Polymer 100:244–258CrossRefGoogle Scholar
  12. 12.
    Nasti G, Gentile G, Cerruti P, Carfagna C, Ambrogi V (2016) Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 99:193–203CrossRefGoogle Scholar
  13. 13.
    Waheed Q, Khan AN, Jan R (2016) Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer 97:496–503CrossRefGoogle Scholar
  14. 14.
    Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 20:1–9CrossRefGoogle Scholar
  15. 15.
    Mallakpour S, Rashidimoghadam S (2018) Application of ultrasonic irradiation as a benign method for production of glycerol plasticized-starch/ascorbic acid functionalized MWCNTs nanocomposites: investigation of methylene blue adsorption and electrical properties. Ultrason Sonochem 40:419–432CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao J, Yu J, Xie Y, Le Z, Hong X, Ci S et al (2016) Lanthanum and neodymium doped barium ferrite-TiO2/MCNTs/poly(3-methyl thiophene) composites with nest structures: preparation, characterization and electromagnetic microwave absorption properties. Sci Rep 6:20496–20505CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037CrossRefPubMedGoogle Scholar
  18. 18.
    Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett T (2002) Single wall carbon nanotube-Nafion composite actuators. Nano Lett 2:1329–1332CrossRefGoogle Scholar
  19. 19.
    Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194CrossRefPubMedGoogle Scholar
  20. 20.
    Mallakpour S, Rashidimoghadam S (2017) Starch/MWCNT-vitamin C nanocomposites: electrical, thermal properties and their utilization for removal of methyl orange. Carbohydr Polym 169:23–32CrossRefPubMedGoogle Scholar
  21. 21.
    Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348CrossRefGoogle Scholar
  22. 22.
    Morris RS, Dixon BG, Gennett T, Raffaelle R, Heben MJ (2004) High-energy, rechargeable Li-ion battery based on carbon nanotube technology. J Power Sources 138:277–280CrossRefGoogle Scholar
  23. 23.
    Yoon B-J, Jeong S-H, Lee K-H, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174CrossRefGoogle Scholar
  24. 24.
    Zhong W, Liu P, Tang Z, Wu X, Qiu J (2012) Facile approach for superparamagnetic CNT-Fe3O4/polystyrene tricomponent nanocomposite via synergetic dispersion. Ind Eng Chem Res 51:12017–12024CrossRefGoogle Scholar
  25. 25.
    Zhao J, Xie Y, Guan D, Hua H, Zhong R, Qin Y et al (2015) BaFe12O19-chitosan Schiff-base Ag(I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials. Sci Rep 5:12544–12555CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hong X, Xie Y, Wang X, Li M, Le Z, Gao Y et al (2015) A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe11.92(LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene. Compos Sci Technol 117:215–224CrossRefGoogle Scholar
  27. 27.
    Zhao J, Xie Y, Li M, Xu F, Le Z, Qin Y et al (2014) Preparation of magnetic-conductive Mn0.6Zn0.4Fe2O4-CNTs/PANI nanocomposites through hydrothermal synthesis coupled with in situ polymerization. Compos Sci Technol 99:147–153CrossRefGoogle Scholar
  28. 28.
    Xie Y, Zhao J, Le Z, Li M, Chen J, Gao Y et al (2014) Preparation and electromagnetic properties of chitosan-decorated ferrite-filled multi-walled carbon nanotubes/polythiophene composites. Compos Sci Technol 99:141–146CrossRefGoogle Scholar
  29. 29.
    Xie Y, Hong X, Yu C, Li M, Huang Y, Gao Y et al (2013) Preparation and magnetic properties of poly(3-octyl-thiophene)/BaFe11.92(LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes nanocomposites. Compos Sci Technol 77:8–13CrossRefGoogle Scholar
  30. 30.
    Liu F, Xie Y, Duan J, Hua H, Yu C, Gao Y et al (2015) Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction. Mater Chem Phys 158:121–126CrossRefGoogle Scholar
  31. 31.
    Zhao J, Xie Y, Yu C, Le Z, Zhong R, Qin Y et al (2013) Preparation and characterization of the graphene-carbon nanotube/CoFe2O4/polyaniline composite with reticular branch structures. Mater Chem Phys 142:395–402CrossRefGoogle Scholar
  32. 32.
    Giambastiani G, Cicchi S, Giannasi A, Luconi L, Rossin A, Mercuri F et al (2011) Functionalization of multiwalled carbon nanotubes with cyclic nitrones for materials and composites: addressing the role of CNT sidewall defects. Chem Mater 23:1923–1938CrossRefGoogle Scholar
  33. 33.
    Lee SW, Kim B-S, Chen S, Shao-Horn Y, Hammond PT (2008) Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671­679Google Scholar
  34. 34.
    Mallakpour S, Behranvand V (2016) Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. Eur Polym J 84:377–403CrossRefGoogle Scholar
  35. 35.
    Mallakpour S, Khodadadzadeh L (2018) Biocompatible and biodegradable Chitosan nanocomposites loaded with carbon nanotubes, Shimpi, Navinchandra Gopal. Biodegradable and biocompatible polymer composites. Woodhead Publishing, Duxford, pp 187–221Google Scholar
  36. 36.
    Fatemi SM, Foroutan M (2015) Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J Iran Chem Soc 12:1905–1913CrossRefGoogle Scholar
  37. 37.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ et al (1998) Fullerene pipes. Science 280:1253–1256CrossRefPubMedGoogle Scholar
  38. 38.
    Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 31:638–639CrossRefGoogle Scholar
  39. 39.
    Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703CrossRefGoogle Scholar
  40. 40.
    Mallakpour S, Nouruzi N (2016) Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid­modified ZnO nanoparticles. J Mater Sci 51:6400–6410CrossRefGoogle Scholar
  41. 41.
    Mallakpour S, Nouruzi N (2017) Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Mater Chem Phys 197:129–137CrossRefGoogle Scholar
  42. 42.
    Mallakpour S, Nouruzi N (2018) Polycaprolactone/metal oxide nanocomposites: an overview of recent progress and applications, Shimpi, Navinchandra Gopal. Biodegradable and biocompatible polymer composites. Woodhead Publishing, Duxford, pp 223–263Google Scholar
  43. 43.
    Abedini R, Abdullah A, Alizadeh Y (2016) Ultrasonic assisted hot metal powder compaction. Ultrason Sonochem 38:704–710CrossRefPubMedGoogle Scholar
  44. 44.
    Anirudhan T, Divya P, Nima J (2013) Silylated montmorillonite based molecularly imprinted polymer for the selective binding and controlled release of thiamine hydrochloride. React Funct Polym 73:1144–1155CrossRefGoogle Scholar
  45. 45.
    Lei M, Ma L, Hu L (2010) A convenient one-pot synthesis of formamide derivatives using thiamine hydrochloride as a novel catalyst. Tetrahedron Lett 51:4186–4188CrossRefGoogle Scholar
  46. 46.
    Mallakpour S, Nouruzi N (2017) Evaluation of ZnO-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polym Plast Technol Eng 57:46–58CrossRefGoogle Scholar
  47. 47.
    Chen Y, Shan W, Lei M, Hu L (2012) Thiamine hydrochloride (VB1) as an efficient promoter for the one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Tetrahedron Lett 53:5923–5925CrossRefGoogle Scholar
  48. 48.
    Mallakpour S, Abdolmaleki A, Azimi F (2017) Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with thiamine and its influence on the properties of PVC/Tm­MWCNTs nanocomposite Films. Ultrason Sonochem 39:589–596CrossRefPubMedGoogle Scholar
  49. 49.
    Tahermansouri H, Biazar E (2013) Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Mater 28:199–207CrossRefGoogle Scholar
  50. 50.
    Abuilaiwi FA, Laoui T, Al-Harthi M, Atieh MA (2010) Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab J Sci Eng 35:37–48Google Scholar
  51. 51.
    Barrios SE, Contreras JM, Lopez-Carrasquero F, Muller AJ (2013) Chemical modification of cassastarch by carboxymethylation reactions using sodium monochloro acetate as modifying agent. Revista de la Facultad de Ingeniería Universidad Central de Venezuela 27:97–105Google Scholar
  52. 52.
    Li J, Shin GH, Lee IW, Chen X, Park HJ (2016) Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll 56:41–49CrossRefGoogle Scholar
  53. 53.
    Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations