Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3051–3059 | Cite as

A Novel Wastewater Treating Material: Cationic Poly Acrylamide/Diatomite Composite Flocculant

  • Kun Xu
  • Yao Liu
  • Yang Wang
  • Tao Wang
  • Haiwei Wang
  • Xuechen Liang
  • Cuige Lu
  • Ying Tan
  • Xiusheng Liu
  • Pixin Wang
Original Paper


In this work, poly(methacrylatoethyl trimethyl ammonium chloride -co-acrylamide)/diatomite composite flocculant was synthesized via in situ polymerization in aqueous solution and applied in waste water treatment. The structure of composite flocculants was characterized by FT-IR, 1HNMR and XRD, TGA and viscometer. Herein, the apparent viscosity of composite flocculants was employed as comparison standard of their performance to evaluate the influence of the reaction parameters, such as monomer feeding ratio, diatomite mass fraction and polymerization temperature, etc. on their flocculation performance. And based on the above investigations, the optimum synthesis condition could be found. By comparing flocculation properties of composite flocculants with that of the conventional cationic flocculant, the dosage of composite flocculant that could make the transmittance of treated waste water exceed 95 % was only 7.5 ppm which was far lower than that of conventional flocculant (60–90 ppm). Meanwhile, the settling time was lower than 5 s which was similarly to that of conventional flocculant. Finally, the conclusion was that the composite flocculant owned higher absorption capacity and larger chain extending space than those of conventional linear flocculant due to the introduction of diatomite as backbone, which could make linear polymer chains free from entanglement and improve the flocculation capacity notably.


Composite flocculant Diatomite Flocculation properties Bentonite simulative waste-water 



The authors are grateful for the financial support provided by Major Project of Jilin Province (Nos. 20140204083GX, 20160101306JC).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Ponou J, Ide T, Suzuki A, Tsuji H, Wang LP, Dodbiba G, Fujita T (2014) Water Sci Technol 69:1249–1258CrossRefPubMedGoogle Scholar
  2. 2.
    Tripathy T (2006) Vidyasagar University. Midnapore, West-BengalGoogle Scholar
  3. 3.
    Ríos HE, González-Navarrete J, Vargas V, Urzúa MD (2011) Colloid Surf A 384:262–267CrossRefGoogle Scholar
  4. 4.
    Borkovec M, Papastavrou G (2008) Curr Opin Colloid Interface Sci 13:429–437CrossRefGoogle Scholar
  5. 5.
    Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Grima EM (2012) Bioresour Technol 118:102–110CrossRefPubMedGoogle Scholar
  6. 6.
    Chen X, Chen G, Yue PL (2007) Sep Sci Technol 19:65–76Google Scholar
  7. 7.
    Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Chemosphere 66:1752–1757CrossRefPubMedGoogle Scholar
  8. 8.
    Wang LJ, Wang JP, Yuan SJ, Zhang SJ, Yong T, Yu HQ (2009) Chem Eng J 149:118–122CrossRefGoogle Scholar
  9. 9.
    Ho YC, Norli I, Alkarkhi AFM, Morad N (2010) Bioresour Technol 101:1166–1174CrossRefPubMedGoogle Scholar
  10. 10.
    Gao BY, Wang Y, Yue QY (2005) Acta Hydrochim Hydrobiol 33:365–371CrossRefGoogle Scholar
  11. 11.
    Zou J, Zhu H, Wang F, Sui H, Fan J (2011) Chem Eng J 171:350–356CrossRefGoogle Scholar
  12. 12.
    Lemons JF (1997) Am Ceram Soc Bull 76:92–98Google Scholar
  13. 13.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469–2479CrossRefGoogle Scholar
  14. 14.
    Al-Degs Y, Khraisheh MAM, Tutunji MF (2001) Water Res 35:3724–3728CrossRefPubMedGoogle Scholar
  15. 15.
    Karaman S, Karaipekli A, Sarı A, Biçer A (2011) Sol Energy Mater Sol Cells 95:1647–1653CrossRefGoogle Scholar
  16. 16.
    Xu B, Li Z (2013) Appl Energy 105:229–237CrossRefGoogle Scholar
  17. 17.
    Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) J Environ Manag 69:229–238CrossRefGoogle Scholar
  18. 18.
    Al-Ghouti MA, Al-Degs YS (2011) Chem Eng J 173:115–128CrossRefGoogle Scholar
  19. 19.
    O’Shea JP, Qiao GG, Franks GV (2010) J Colloid Interface Sci 348:9–23CrossRefPubMedGoogle Scholar
  20. 20.
    Sun Z, Zhang Y, Zheng S, Park Y, Frost RL (2013) Thermochim Acta 558:16–21CrossRefGoogle Scholar
  21. 21.
    Shen WN, Feng LJ, Feng H (2012) Chem J Chin Univ 33:353–360Google Scholar
  22. 22.
    Barata-Rodrigues PM, Mays TJ, Moggridge GD (2003) Carbon 41:2231–2246CrossRefGoogle Scholar
  23. 23.
    Ovenden C, Xiao H (2002) Colloid Surf A 197:225–234CrossRefGoogle Scholar
  24. 24.
    Ji J, Qiu J, Wai N, Wong FS, Li Y (2009) Water Res 44:1627–1635CrossRefPubMedGoogle Scholar
  25. 25.
    Biggs S, Habgood M, Jameson GJ, Yan YD (2000) Chem Eng J 80:13–22CrossRefGoogle Scholar
  26. 26.
    Gregory J, Barany S (2011) Adv Colloid Interface Sci 169:1–12CrossRefPubMedGoogle Scholar
  27. 27.
    Gao BY, Yan W, Yue QY, Wei JC, Qian L (2007) Sep Purif Technol 54:157–163CrossRefGoogle Scholar
  28. 28.
    Bolto B, Gregory J (2007) Water Res 41:2301–2324CrossRefPubMedGoogle Scholar
  29. 29.
    Wei J, Gao B, Yue Q, Wang Y, Li W, Zhu X (2009) Water Res 43:724–732CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kun Xu
    • 1
  • Yao Liu
    • 1
  • Yang Wang
    • 2
  • Tao Wang
    • 3
  • Haiwei Wang
    • 1
  • Xuechen Liang
    • 1
  • Cuige Lu
    • 1
  • Ying Tan
    • 1
  • Xiusheng Liu
    • 2
  • Pixin Wang
    • 1
  1. 1.Key Laboratory of Polymer Ecomaterials, Chinese Academy of SciencesChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China
  2. 2.Wuhan Research Institute of Materials ProtectionWuhanPeople’s Republic of China
  3. 3.The Engineering and Technology Research InstitutePetrochina TuHa Oilfield CompanyTurpanPeople’s Republic of China

Personalised recommendations