Skip to main content
Log in

Biocompatible Polyurethane Scaffolds Prepared from Glycerol Monostearate-Derived Polyester Polyol

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable polyester polyol was synthesized from oleochemical glycerol monostearate (GMS) and glutaric acid under a non-catalyzed and solvent-free polycondensation method. The chemical structure of GMS-derived polyester polyol (GPP) was elucidated by FTIR, 1H and 13C NMR, and molecular weight of GPP was characterized by GPC. The synthesized GPP with acid value of 3.03 mg KOH/g sample, hydroxyl value of 115.72 mg KOH/g sample and Mn of 1345 g/mol was incorporated with polyethylene glycol (PEG) and polycaprolactone diol (PCL diol) to produce a water-blown porous polyurethane system via one-shot foaming method. The polyurethanes were optimized by evaluating glycerol as a crosslinker, silicone surfactant and water blowing agent on tensile properties of polyurethanes. All polyurethanes underwent structural change, and crystalline hard segments of polyurethanes were shifted to higher temperature suggested that hard segments undergone re-ordering process during enzymatic treatment. In terms of biocompatibility, polyurethane scaffold produced by reacting 100% w/w of GPP with isophorone diisocyanate and additives showed the highest cells viability of 3T3 mouse fibroblast (94%, day 1), and MG63 human osteosarcoma (107%, day 1) and better cell adhesion as compared to reference polyurethane produced by only PEG and PCL diol (3T3 cell viability: 8%; MG63 cell viability: 2%). The current work demonstrated GPP synthesized from renewable and environmental friendly resources produced polyurethanes that allows improvement in physico-chemical, mechanical and biocompatibility properties. By blending with increasing content of GPP, the water-blown porous polyurethane scaffold has shown great potential as biomaterial for soft and hard tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dang LN, Le Hoang S, Malin M, Weisser J, Walter T, Schnabelrauch M, Seppälä J (2016) Eur Polym J 81:129–137

    Article  CAS  Google Scholar 

  2. Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Eur Polym J 43:1838–1846

    Article  CAS  Google Scholar 

  3. Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q (2010) J Biomater Sci 21:1637–1652

    Article  CAS  Google Scholar 

  4. Qu WQ, Xia YR, Jiang LJ, Zhang LW, Hou ZS (2016) Chin Chem Lett 27:135–138

    Article  CAS  Google Scholar 

  5. Sartori S, Boffito M, Serafini P, Caporale A, Silvestri A, Bernardi E (2013) React Funct Polym 73:1366–1376

    Article  CAS  Google Scholar 

  6. Chen R, Huang C, Ke Q, He C, Wang H, Mo X (2010) Colloids Surf B Biointerfaces 79:315–325

    Article  CAS  PubMed  Google Scholar 

  7. Chiono V, Mozetic P, Boffito M, Sartori S, Gioffredi E, Silvestri A (2014) Interface Focus 4:20130045

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ruan C, Hu N, Hu Y, Jiang L, Cai Q, Wang H (2014) Polymer 55:1020–1027

    Article  CAS  Google Scholar 

  9. Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS (2005) Acta Biomater 1:471–484

    Article  PubMed  Google Scholar 

  10. Barrioni BR, de Carvalho SM, Oréfice RL, de Oliveira AAR, de Magalhães Pereira M (2015) Mater Sci Eng C 52:22–30

    Article  CAS  Google Scholar 

  11. Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Int J Nanomed 6:2375–2384

    Article  CAS  Google Scholar 

  12. Liu H, Gao Z, Hu X, Wang Z, Su T, Yang L, Yan S (2016) J Polym Environ 2:156–164

    Google Scholar 

  13. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) J Polym Environ 21:807–816

    Article  CAS  Google Scholar 

  14. Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q (2011) Polym Chem 2:601–607

    Article  CAS  Google Scholar 

  15. Kupra V, Vojtova L, Fohlerova Z, Jancar J (2016) Exp Polym Lett 6:479–492

    Google Scholar 

  16. Sun LJ, Yao C, Zheng HF, Lin J (2012) Chin Chem Lett 23:919–922

    Article  CAS  Google Scholar 

  17. Noor NM, Ismail TNMT, Kian YS, Hassan HA (2013) J Oil Palm Res 25:92–99

    CAS  Google Scholar 

  18. Badri KH, Ahmad SH, Zakaria S (2001) J Appl Polym Sci 81:384–389

    Article  CAS  Google Scholar 

  19. Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH (2013) Ind Crops Prod 50:563–567

    Article  CAS  Google Scholar 

  20. Sahoo S, Kalita H, Mohanty S, Nayak SK (2017) J Polym Environ 1–12

  21. Zieleniewska M, Auguścik M, Prociak A, Rojek P, Ryszkowska J (2014) Poly Degrad Stab 108:241–249

    Article  CAS  Google Scholar 

  22. Horák P, Beneš H (2015) Polimery 60

  23. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Saeedi-Eslami SN (2013) Mater Sci Eng C Mater Biol Appl 33:153–164

    Article  CAS  PubMed  Google Scholar 

  24. Ng WS, Lee CS, Chuah CH, Cheng SF (2017) Ind Crops Prod 97:65–78

    Article  CAS  Google Scholar 

  25. Zhang S, Xiang A, Tian H, Rajulu AV (2016) J Polym Environ 1–8

  26. Hafeman AE, Li B, Yoshii T, Zienkiewicz K, Davidson JM, Guelcher SA (2008) Pharm Res 25:2387–2399

    Article  CAS  PubMed  Google Scholar 

  27. ASTM Standard D3574–11, 2008, Standard test methods for flexible cellular materials – slab, bonded, and molded urethane foams, ASTM International, West Conshohocken, PA, 2008, pp 3574–3508

  28. Skrobot J, Ignaczak W, El Fray M (2015) Polym Degrad Stab 120:368–376

    Article  CAS  Google Scholar 

  29. Podporska-Carroll J, Ip JW, Gogolewski S (2014) Acta Biomater 10:2781–2791

    Article  CAS  PubMed  Google Scholar 

  30. Mihai R, Florescu IP, Coroiu V, Oancea A, Lungu M (2011) J Med Life 4:250–255

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu CC, Lee YS, Cheon BS, Lee SH (2003) Bull Korean Chem Soc 24:1229–1231

    Article  CAS  Google Scholar 

  32. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing, Shrewsbury

    Google Scholar 

  33. Yeganeh H, Hojati-Talemi P (2007) Polym Degrad Stab 92:480–484

    Article  CAS  Google Scholar 

  34. Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, New York

    Google Scholar 

  35. Gholami H, Yeganeh H, Burujeny SB, Sorayya M, Shams E (2017) J Polym Environ 1–12

  36. Joseph J, Jemmis ED (2007) J Am Chem Soc 129:4620–4632

    Article  CAS  PubMed  Google Scholar 

  37. Ghandi M, Mostashari A, Karegar M, Barzegar M (2007) J Am Oil Chem Soc 84:681–685

    Article  CAS  Google Scholar 

  38. Serkis M, Špírková M, Poręba R, Hodan J, Kredatusová J, Kubies D (2015) Polym Degrad Stab 119:23–34

    Article  CAS  Google Scholar 

  39. Chun BC, Chong MH, Chung YC (2007) J Mater Sci 42:6524–6531

    Article  CAS  Google Scholar 

  40. Vermette P, Griesser HJ, Laroche G, Guidoin R (2001) Biomedical applications of polyurethanes. Landes Bioscience, Georgetown

    Google Scholar 

  41. Špírková M, Hodan J, Kobera L, Kredatusová J, Kubies D, Machová L (2017) Polym Degrad Stab 137:216–228

    Article  CAS  Google Scholar 

  42. Pan J, Li G, Chen Z, Chen X, Zhu W, Xu K (2009) Biomater 30:2975–2984

    Article  CAS  Google Scholar 

  43. Zulkifli FH, Hussain FSJ, Rasad MSBA., Yusoff MM (2014) Carbohydr Polym 114:238–245

    Article  CAS  PubMed  Google Scholar 

  44. Cauich-Rodríguez JV, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM (2013) In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. Intech, Croatia

    Google Scholar 

  45. Sarkar D, Yang JC, Lopina ST (2008) J Appl Polym Sci 108:2345–2355

    Article  CAS  Google Scholar 

  46. Guan J, Stankus JJ, Wagner WR (2007) J Control Release 120:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang CH, Tsao CT, Chang KY, Chen SH, Han JL, Hsieh KH (2012) Biomed Mater Eng 22:373–382

    CAS  PubMed  Google Scholar 

  48. Wang L, Li Y, Zuo Y, Zhang L, Zou Q, Cheng L, Jiang H (2009) Biomed Mater 4:025003

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka R, Hirose S, Hatakeyama H (2008) Bioresour Technol 99:3810–3816

    Article  CAS  PubMed  Google Scholar 

  50. Dong Z, Li Y, Zou Q (2009) Appl Surf Sci 255:6087–6091

    Article  CAS  Google Scholar 

  51. Kowalczuk D, Ginalska G, Przekora A (2011) J Biomed Mater Res A 98A:222–228

    Article  CAS  Google Scholar 

  52. Lönnroth EC, Dahl JE (2003) ‎Acta Odontol Scand 61:52–56

    Article  PubMed  Google Scholar 

  53. González-Paz RJ, Ferreira AM, Mattu C, Boccafoschi F, Lligadas G, Ronda JC (2013) React Funct Polym 73:690–697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by University Malaya Research Grant (RG250-12AFR) and Postgraduate Research Fund (PG051-12AFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sit-Foon Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, W.S., Lee, C.S., Cheng, SF. et al. Biocompatible Polyurethane Scaffolds Prepared from Glycerol Monostearate-Derived Polyester Polyol. J Polym Environ 26, 2881–2900 (2018). https://doi.org/10.1007/s10924-017-1175-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1175-2

Keywords

Navigation