Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2881–2900 | Cite as

Biocompatible Polyurethane Scaffolds Prepared from Glycerol Monostearate-Derived Polyester Polyol

  • Wei Seng Ng
  • Choy Sin Lee
  • Sit-Foon Cheng
  • Cheng Hock Chuah
  • Shew Fung Wong
Original Paper
  • 149 Downloads

Abstract

Biodegradable polyester polyol was synthesized from oleochemical glycerol monostearate (GMS) and glutaric acid under a non-catalyzed and solvent-free polycondensation method. The chemical structure of GMS-derived polyester polyol (GPP) was elucidated by FTIR, 1H and 13C NMR, and molecular weight of GPP was characterized by GPC. The synthesized GPP with acid value of 3.03 mg KOH/g sample, hydroxyl value of 115.72 mg KOH/g sample and Mn of 1345 g/mol was incorporated with polyethylene glycol (PEG) and polycaprolactone diol (PCL diol) to produce a water-blown porous polyurethane system via one-shot foaming method. The polyurethanes were optimized by evaluating glycerol as a crosslinker, silicone surfactant and water blowing agent on tensile properties of polyurethanes. All polyurethanes underwent structural change, and crystalline hard segments of polyurethanes were shifted to higher temperature suggested that hard segments undergone re-ordering process during enzymatic treatment. In terms of biocompatibility, polyurethane scaffold produced by reacting 100% w/w of GPP with isophorone diisocyanate and additives showed the highest cells viability of 3T3 mouse fibroblast (94%, day 1), and MG63 human osteosarcoma (107%, day 1) and better cell adhesion as compared to reference polyurethane produced by only PEG and PCL diol (3T3 cell viability: 8%; MG63 cell viability: 2%). The current work demonstrated GPP synthesized from renewable and environmental friendly resources produced polyurethanes that allows improvement in physico-chemical, mechanical and biocompatibility properties. By blending with increasing content of GPP, the water-blown porous polyurethane scaffold has shown great potential as biomaterial for soft and hard tissue engineering.

Keywords

Biocompatible Glycerol monostearate Oleochemical Polyester polyol Polyurethane 

Notes

Acknowledgements

The work was supported by University Malaya Research Grant (RG250-12AFR) and Postgraduate Research Fund (PG051-12AFR).

References

  1. 1.
    Dang LN, Le Hoang S, Malin M, Weisser J, Walter T, Schnabelrauch M, Seppälä J (2016) Eur Polym J 81:129–137CrossRefGoogle Scholar
  2. 2.
    Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Eur Polym J 43:1838–1846CrossRefGoogle Scholar
  3. 3.
    Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q (2010) J Biomater Sci 21:1637–1652CrossRefGoogle Scholar
  4. 4.
    Qu WQ, Xia YR, Jiang LJ, Zhang LW, Hou ZS (2016) Chin Chem Lett 27:135–138CrossRefGoogle Scholar
  5. 5.
    Sartori S, Boffito M, Serafini P, Caporale A, Silvestri A, Bernardi E (2013) React Funct Polym 73:1366–1376CrossRefGoogle Scholar
  6. 6.
    Chen R, Huang C, Ke Q, He C, Wang H, Mo X (2010) Colloids Surf B Biointerfaces 79:315–325CrossRefPubMedGoogle Scholar
  7. 7.
    Chiono V, Mozetic P, Boffito M, Sartori S, Gioffredi E, Silvestri A (2014) Interface Focus 4:20130045CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ruan C, Hu N, Hu Y, Jiang L, Cai Q, Wang H (2014) Polymer 55:1020–1027CrossRefGoogle Scholar
  9. 9.
    Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS (2005) Acta Biomater 1:471–484CrossRefPubMedGoogle Scholar
  10. 10.
    Barrioni BR, de Carvalho SM, Oréfice RL, de Oliveira AAR, de Magalhães Pereira M (2015) Mater Sci Eng C 52:22–30CrossRefGoogle Scholar
  11. 11.
    Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Int J Nanomed 6:2375–2384CrossRefGoogle Scholar
  12. 12.
    Liu H, Gao Z, Hu X, Wang Z, Su T, Yang L, Yan S (2016) J Polym Environ 2:156–164Google Scholar
  13. 13.
    Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) J Polym Environ 21:807–816CrossRefGoogle Scholar
  14. 14.
    Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q (2011) Polym Chem 2:601–607CrossRefGoogle Scholar
  15. 15.
    Kupra V, Vojtova L, Fohlerova Z, Jancar J (2016) Exp Polym Lett 6:479–492Google Scholar
  16. 16.
    Sun LJ, Yao C, Zheng HF, Lin J (2012) Chin Chem Lett 23:919–922CrossRefGoogle Scholar
  17. 17.
    Noor NM, Ismail TNMT, Kian YS, Hassan HA (2013) J Oil Palm Res 25:92–99Google Scholar
  18. 18.
    Badri KH, Ahmad SH, Zakaria S (2001) J Appl Polym Sci 81:384–389CrossRefGoogle Scholar
  19. 19.
    Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH (2013) Ind Crops Prod 50:563–567CrossRefGoogle Scholar
  20. 20.
    Sahoo S, Kalita H, Mohanty S, Nayak SK (2017) J Polym Environ 1–12Google Scholar
  21. 21.
    Zieleniewska M, Auguścik M, Prociak A, Rojek P, Ryszkowska J (2014) Poly Degrad Stab 108:241–249CrossRefGoogle Scholar
  22. 22.
    Horák P, Beneš H (2015) Polimery 60Google Scholar
  23. 23.
    Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Saeedi-Eslami SN (2013) Mater Sci Eng C Mater Biol Appl 33:153–164CrossRefPubMedGoogle Scholar
  24. 24.
    Ng WS, Lee CS, Chuah CH, Cheng SF (2017) Ind Crops Prod 97:65–78CrossRefGoogle Scholar
  25. 25.
    Zhang S, Xiang A, Tian H, Rajulu AV (2016) J Polym Environ 1–8Google Scholar
  26. 26.
    Hafeman AE, Li B, Yoshii T, Zienkiewicz K, Davidson JM, Guelcher SA (2008) Pharm Res 25:2387–2399CrossRefPubMedGoogle Scholar
  27. 27.
    ASTM Standard D3574–11, 2008, Standard test methods for flexible cellular materials – slab, bonded, and molded urethane foams, ASTM International, West Conshohocken, PA, 2008, pp 3574–3508Google Scholar
  28. 28.
    Skrobot J, Ignaczak W, El Fray M (2015) Polym Degrad Stab 120:368–376CrossRefGoogle Scholar
  29. 29.
    Podporska-Carroll J, Ip JW, Gogolewski S (2014) Acta Biomater 10:2781–2791CrossRefPubMedGoogle Scholar
  30. 30.
    Mihai R, Florescu IP, Coroiu V, Oancea A, Lungu M (2011) J Med Life 4:250–255PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yu CC, Lee YS, Cheon BS, Lee SH (2003) Bull Korean Chem Soc 24:1229–1231CrossRefGoogle Scholar
  32. 32.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing, ShrewsburyGoogle Scholar
  33. 33.
    Yeganeh H, Hojati-Talemi P (2007) Polym Degrad Stab 92:480–484CrossRefGoogle Scholar
  34. 34.
    Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, New YorkGoogle Scholar
  35. 35.
    Gholami H, Yeganeh H, Burujeny SB, Sorayya M, Shams E (2017) J Polym Environ 1–12Google Scholar
  36. 36.
    Joseph J, Jemmis ED (2007) J Am Chem Soc 129:4620–4632CrossRefPubMedGoogle Scholar
  37. 37.
    Ghandi M, Mostashari A, Karegar M, Barzegar M (2007) J Am Oil Chem Soc 84:681–685CrossRefGoogle Scholar
  38. 38.
    Serkis M, Špírková M, Poręba R, Hodan J, Kredatusová J, Kubies D (2015) Polym Degrad Stab 119:23–34CrossRefGoogle Scholar
  39. 39.
    Chun BC, Chong MH, Chung YC (2007) J Mater Sci 42:6524–6531CrossRefGoogle Scholar
  40. 40.
    Vermette P, Griesser HJ, Laroche G, Guidoin R (2001) Biomedical applications of polyurethanes. Landes Bioscience, GeorgetownGoogle Scholar
  41. 41.
    Špírková M, Hodan J, Kobera L, Kredatusová J, Kubies D, Machová L (2017) Polym Degrad Stab 137:216–228CrossRefGoogle Scholar
  42. 42.
    Pan J, Li G, Chen Z, Chen X, Zhu W, Xu K (2009) Biomater 30:2975–2984CrossRefGoogle Scholar
  43. 43.
    Zulkifli FH, Hussain FSJ, Rasad MSBA., Yusoff MM (2014) Carbohydr Polym 114:238–245CrossRefPubMedGoogle Scholar
  44. 44.
    Cauich-Rodríguez JV, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM (2013) In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. Intech, CroatiaGoogle Scholar
  45. 45.
    Sarkar D, Yang JC, Lopina ST (2008) J Appl Polym Sci 108:2345–2355CrossRefGoogle Scholar
  46. 46.
    Guan J, Stankus JJ, Wagner WR (2007) J Control Release 120:70–78CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chang CH, Tsao CT, Chang KY, Chen SH, Han JL, Hsieh KH (2012) Biomed Mater Eng 22:373–382PubMedGoogle Scholar
  48. 48.
    Wang L, Li Y, Zuo Y, Zhang L, Zou Q, Cheng L, Jiang H (2009) Biomed Mater 4:025003CrossRefPubMedGoogle Scholar
  49. 49.
    Tanaka R, Hirose S, Hatakeyama H (2008) Bioresour Technol 99:3810–3816CrossRefPubMedGoogle Scholar
  50. 50.
    Dong Z, Li Y, Zou Q (2009) Appl Surf Sci 255:6087–6091CrossRefGoogle Scholar
  51. 51.
    Kowalczuk D, Ginalska G, Przekora A (2011) J Biomed Mater Res A 98A:222–228CrossRefGoogle Scholar
  52. 52.
    Lönnroth EC, Dahl JE (2003) ‎Acta Odontol Scand 61:52–56CrossRefPubMedGoogle Scholar
  53. 53.
    González-Paz RJ, Ferreira AM, Mattu C, Boccafoschi F, Lligadas G, Ronda JC (2013) React Funct Polym 73:690–697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Research on Lipids (URL), Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia

Personalised recommendations