Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2917–2924 | Cite as

Preparation, Characterization and Dye Adsorption/Reuse of Chitosan-Vanadate Films

  • Denys A. S. Rodrigues
  • Jaqueline M. Moura
  • Guilherme L. Dotto
  • Tito R. S. CadavalJr.
  • Luiz A. A. Pinto
Original Paper


Chitosan used on dyes adsorption when in film form shows limitations due to its low regeneration capacity. In this work, chitosan films were modified using vanadium ions to improve its regeneration capacity on the dye adsorption. Films were characterized and analyzed by FT-IR, XRD and DSC. Adsorption assays were performed using chitosan-vanadate films (CVF) to remove the Reactive Black 5 dye in aqueous solution. The adsorption was favored by the pH decrease from 8.0 to 4.0. The equilibrium data were best fitted by Langmuir model, with qm of 522 mg g−1 at 298 K. The negative value of ΔH 0 (−9.91 kJ mol−1) showed an exothermic operation and the value of ΔS 0 was positive (0.0705 kJ mol−1 K−1), suggesting an increase in randomness at the solid/solution interface. The kinetics was represented by pseudo-first order model and around 80 min occurred a reduction in the adsorption rates, due to the mass transfer mechanism. The most appropriate eluent to remove the RB5 from CVF was NH4OH 0.01 kg mol L−1. The CVF used to the dye adsorption were regenerated and reutilized five times, and the adsorption capacity was around 80% of the initial value after the last cycle.


Dye adsorption Equilibrium Film Kinetics Polymers Wastewater treatment 



The authors thank CAPES/Brazil (Coordination for the Improvement of Higher Education Personnel) and CNPq/Brazil (National Council for Scientific and Technological Development) for the financial support. The authors too thank CEME-SUL/FURG/Brazil (Electron Microscopy Center of South/Federal University of Rio Grande/RS/Brazil) due to the microscopy images.


  1. 1.
    Ahmad MZ, Rahman NK (2011) Chem Eng J 170:154CrossRefGoogle Scholar
  2. 2.
    Ali I, Aboul-Enein HY (2006) Instrumental methods in metal ions speciation: chromatography, capillary electrophoresis and electrochemistry, Taylor & Francis Ltd., New YorkCrossRefGoogle Scholar
  3. 3.
    Ali I, Aboul-Enein HY, Gupta VK (2009) Nano chromatography and capillary electrophoresis: pharmaceutical and environmental analyses. Wiley, HobokenGoogle Scholar
  4. 4.
    Khan TA, Sharma S, Ali I (2011) J Toxicol Environ Health Sci 10:286Google Scholar
  5. 5.
    Crini G, Badot PM (2008) Prog Polym Sci 33:399CrossRefGoogle Scholar
  6. 6.
    Cheng JS, Du J, Zhu W (2012) Carbohydr Polym 88:61CrossRefGoogle Scholar
  7. 7.
    Wan M, Kan C, Rogel BD, Dalida MLP (2010) Carbohydr Polym 80:891CrossRefGoogle Scholar
  8. 8.
    Wan Ngah WS, Teong LC, Hanafiah MAKM. (2011) Carbohydr Polym 83:1446CrossRefGoogle Scholar
  9. 9.
    Reddy MCS, Sivaramakrishna L, Reddy AV (2012) J Hazard Mater 203–204:118CrossRefPubMedGoogle Scholar
  10. 10.
    Ali I, Gupta VK (2006) Nat Protoc 1:2661CrossRefPubMedGoogle Scholar
  11. 11.
    Ali I (2012) Chem Rev 112:5073CrossRefPubMedGoogle Scholar
  12. 12.
    Ali I (2010) Sep Purif Rev 39:95CrossRefGoogle Scholar
  13. 13.
    Ali I, Asim M, Khan TA (2012) J Environ Manag 113:170CrossRefGoogle Scholar
  14. 14.
    Ali I (2014) Sep Purif Rev 43:175CrossRefGoogle Scholar
  15. 15.
    Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Carbohydr Polym 87:995CrossRefGoogle Scholar
  16. 16.
    Ali I, Al-Othman ZA, Alwarthan A (2017) J Mol Liq 236:205CrossRefGoogle Scholar
  17. 17.
    Ali I, Al-Othman ZA, Alwarthan A (2016) J Mol Liq 224:171CrossRefGoogle Scholar
  18. 18.
    Ali I, Al-Othman ZA, Alwarthan A (2016) J Mol Liq 221:1168CrossRefGoogle Scholar
  19. 19.
    Ali I, Al-Othman ZA, Alwarthan A (2016) J Mol Liq 219:858CrossRefGoogle Scholar
  20. 20.
    Ali I, Al-Othman ZA, Alharbi OML (2016) J Mol Liq 218:465CrossRefGoogle Scholar
  21. 21.
    Vieira RS, Oliveira MLM, Guibal E, Rodríguez–Castellón E, Beppu MM (2011) Coll Surf A 374:108CrossRefGoogle Scholar
  22. 22.
    Rêgo TV, Cadaval TRS Jr, Dotto GL, Pinto LAA (2013) J Coll Interface Sci 411:27CrossRefGoogle Scholar
  23. 23.
    Singh V, Pandey S, Singh SK, Sanghi R (2008) Sol-Gel Sci Technol 47:58CrossRefGoogle Scholar
  24. 24.
    Cadaval TRS Jr, Dotto GL, Seus ER, Mirlean N, Pinto LAA (2015) Desalin Water Treat 57:16583CrossRefGoogle Scholar
  25. 25.
    Moura CM, Moura JM, Soares NM, Pinto LAA (2011) Chem Eng Process 50:351CrossRefGoogle Scholar
  26. 26.
    Dotto GL, Souza VC, Moura JM, Moura CM, Pinto LAA (2011) Dry Technol 29:1784CrossRefGoogle Scholar
  27. 27.
    Weska RF, Moura JM, Batista LM, Rizzi J, Pinto LAA (2007) J Food Eng 80:749CrossRefGoogle Scholar
  28. 28.
    Dotto GL, Moura JM, Cadaval TRS, Pinto LAA (2013) Chem Eng J 214:8CrossRefGoogle Scholar
  29. 29.
    ASTM (2000) Standard test methods for tensile properties of thin plastic sheeting. Standard D882-02, Annual book of ASTM, pp 162–170Google Scholar
  30. 30.
    Silverstein RM, Webster FX, Kiemle DJ (2007) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  31. 31.
    Rivero S, García MA, Pinotti A (2010) Innov Food Sci EmergTechnol 11:369CrossRefGoogle Scholar
  32. 32.
    Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Biomaterials 24:2871CrossRefPubMedGoogle Scholar
  33. 33.
    Ruthven DM (1984) Principles of adsorption and adsorption process. Wiley, New YorkGoogle Scholar
  34. 34.
    Liu Y (2009) J Chem Eng Data 54:1981CrossRefGoogle Scholar
  35. 35.
    Esquerdo VM, Cadaval TRS Jr, Dotto GL, Pinto LAA (2014) J Colloid Interface Sci 424:7CrossRefPubMedGoogle Scholar
  36. 36.
    Li W, Qi L, Aiqin W (2010) Polym Bull 65:961CrossRefGoogle Scholar
  37. 37.
    Dotto GL, Pinto LAA (2011) J Hazard Mater 187:164CrossRefPubMedGoogle Scholar
  38. 38.
    Martinez JM (2000) J Comput Appl Math 124:97CrossRefGoogle Scholar
  39. 39.
    Guibal E (2004) Sep Purif Technol 38:43CrossRefGoogle Scholar
  40. 40.
    Moura JM, Farias BS, Rodrigues DAS, Moura CM, Dotto GL, Pinto LAA (2015) J Polym Environ 23:470CrossRefGoogle Scholar
  41. 41.
    Maji TK, Baruah I, Dube S, Hussain MR (2007) Bioresour Technol 98:840CrossRefPubMedGoogle Scholar
  42. 42.
    Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Carbohydr Polym 99:31CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Food Hydrocolloid 26:311CrossRefGoogle Scholar
  44. 44.
    Dotto GL, Cunha JM, Calgaro CO, Tanabe EH, Bertuol DA (2015) J Hazard Mater 295:29CrossRefPubMedGoogle Scholar
  45. 45.
    Kousksou T, Jamil A, El Omari K, Zeraouli Y, Le Guer Y (2011) Thermochim Acta 519:59CrossRefGoogle Scholar
  46. 46.
    Homer S, Kelly M, Day L (2014) Carbohydr Polym 108:1CrossRefPubMedGoogle Scholar
  47. 47.
    Wu FC, Tseng RL, Juang RS (2000) J Hazard Mater B73:63CrossRefGoogle Scholar
  48. 48.
    Guzmán J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Langmuir 18:1567CrossRefGoogle Scholar
  49. 49.
    Cadaval TRS Jr, Camara AS, Dotto GL, Pinto LAA (2013) Desalin WaterTreat 51:7690CrossRefGoogle Scholar
  50. 50.
    Machado FM, Bergmann CP, Lima EC, Royer B, Souza FE, Jauris IM, Calvete T, Fagan SB (2012) Chem Phys 14:11139Google Scholar
  51. 51.
    Bakhtiari N, Azizian S (2015) J Mol Liq 206:114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and FoodFederal University of Rio Grande–FURGRio GrandeBrazil
  2. 2.Environmental Processes Laboratory, Chemical Engineering DepartmentFederal University of Santa Maria–UFSMSanta MariaBrazil

Personalised recommendations